195 HEGENBERGER ROAD HOTEL
Initial Study

Prepared for
Port of Oakland

March 2014

550 Kearny Street
Suite 800
San Francisco, CA 94108
415.896.5900
www.esassoc.com

Los Angeles
Oakland
Orlando
Palm Springs
Petaluma
Portland
Sacramento
San Diego
Santa Cruz
Seattle
Tampa
Woodland Hills

130713
OUR COMMITMENT TO SUSTAINABILITY | ESA helps a variety of public and private sector clients plan and prepare for climate change and emerging regulations that limit GHG emissions. ESA is a registered assessor with the California Climate Action Registry, a Climate Leader, and founding reporter for the Climate Registry. ESA is also a corporate member of the U.S. Green Building Council and the Business Council on Climate Change (BC3). Internally, ESA has adopted a Sustainability Vision and Policy Statement and a plan to reduce waste and energy within our operations. This document was produced using recycled paper.
TABLE OF CONTENTS

195 Hegenberger Road Hotel Initial Study

1. Project Description
- 1.1 Introduction 1-1
- 1.2 Project Background 1-1
- 1.3 Project Characteristics 1-4
- 1.4 Report Organization 1-9
- 1.5 Other Approvals 1-9

2. Environmental Checklist – Initial Study
- 2.1 Environmental Factors Potentially Affected 2-3
- 2.2 Environmental Checklist 2-4
 - 2.2.1 Aesthetics 2-4
 - 2.2.2 Agricultural and Forest Resources 2-10
 - 2.2.3 Air Quality 2-11
 - 2.2.4 Biological Resources 2-13
 - 2.2.5 Cultural Resources 2-21
 - 2.2.6 Geology, Soils, and Seismicity 2-26
 - 2.2.7 Greenhouse Gas Emissions 2-31
 - 2.2.8 Hazards and Hazardous Materials 2-32
 - 2.2.9 Hydrology and Water Quality 2-35
 - 2.2.10 Land Use and Land Use Planning 2-40
 - 2.2.11 Mineral Resources 2-44
 - 2.2.12 Noise 2-45
 - 2.2.13 Population and Housing 2-53
 - 2.2.14 Public Services 2-54
 - 2.2.15 Recreation 2-58
 - 2.2.16 Transportation and Traffic 2-59
 - 2.2.17 Utilities and Service Systems 2-61
 - 2.2.18 Mandatory Findings of Significance 2-66
 - 2.2.19 Mitigation Measures Identified in this Initial Study 2-67

List of Figures
- 1-1 Project Location 1-3
- 1-2 Aerial View of Project Site 1-5
- 1-3 Project Site Plan 1-6
- 2-1 Landscape Plan 2-7
List of Tables

1. Vibration Velocities for Construction Equipment 2-48
2. Traffic Noise Increases in the Project Area 2-49
3. Maximum Allowable Receiving Noise Level Standards for Temporary Construction Activities, dBA 2-50
4. Typical Construction Equipment Noise Levels 2-50
SECTION 1

Project Description

1.1 Introduction

Monarch Equity Investments, Inc (herein referred to as the “project applicant”) represents the owner of the property located at 195 Hegenberger Road in Oakland, California, within the Oakland Airport Business Park. The project applicant proposes to construct a 19,380 square foot hotel on the approximately 1.95-acre site.

This document is an Initial Study (IS) that analyzes the potential environmental impacts of the proposed construction and operation on the project site. This IS is prepared in compliance with Public Resources Code Section 21000 et seq., California Environmental Quality Act (CEQA) of 1970 (as amended), and Title 14, Chapter 3 of the California Administrative Code, the state CEQA Guidelines. In accordance with CEQA Guidelines Section 15063, an IS shall be prepared to determine if the project may have a significant effect on the environment.

In accordance with Section 15063 of the CEQA Guidelines, this document is being circulated to local, state and federal agencies and to interested organizations and individuals who may wish to review and comment on the report. Written comments may be forwarded to:

Port of Oakland
Colleen Liang, Environmental Scientist
Environmental Programs and Planning Division
530 Water Street
Oakland, CA 94607
Email: CLiang@portoakland.com

1.2 Project Background

The project sponsor, Monarch Equity Investments, Inc., proposes to construct a 140-room hotel intended to serve patrons of Oakland International Airport, located about one mile south of the proposed project. The five-story hotel would occupy a 84,953-square-foot (sq. ft.) (1.95 acres) interior lot set back approximately 270 feet west of Hegenberger Road and approximately 390 feet northeast of Pardee Drive.¹ Vehicular access to the site would be provided by recorded driveway easements from both Hegenberger Road and Pardee Drive.

¹ Note that the flag-shaped lot has a northeast-southwest orientation. Directional information presented in this report is based on the absolute direction.
The proposed building would have a footprint of 19,380 sq. ft. and would provide a total building area of 95,927 sq. ft. Based on the total area of the site, the building would have a floor area ratio (FAR) of 1.13. In addition to 140 guest rooms, the hotel would include a 1,928 sq. ft. meeting room with a capacity of 80 seats, a restaurant, a bar/lounge, a small gym with exercise equipment, a pool, and an outdoor patio. The building would also provide an employee break room, laundry, food preparation area, offices, miscellaneous work areas, electrical and mechanical rooms, and various storage rooms.

1.2.1 Project Location and Setting

The project site is located in the southwestern portion of the City of Oakland, in the vicinity of Oakland International Airport and Interstate 880 (I-880). The address of the proposed project at 195 Hegenberger Road, which is on an interior parcel (Assessor’s Parcel No. 042-4420-014) set back approximately 270 feet west of Hegenberger Road and approximately 390 feet north of Pardee Drive.

The project site is about one-half mile east of Bay Farm Island on Alameda and, as shown on Figure 1-1, about one mile north of the Oakland International Airport and about 3,400 feet west of I–880, the major north–south regional freeway connecting cities located on the eastern shore of San Francisco Bay. San Leandro Bay is located 1.5 miles northeast of the project and the island City of Alameda is 2.2 miles to the northeast. A manmade channel that is the terminus to San Leandro Creek prior to its discharge into San Leandro Bay runs in a northwesterly direction about 400 feet north of the site. A paved recreation trail runs along the edge of the channel and into the Martin Luther King Jr. Regional Shoreline Arrowhead Marsh (MLK Park), owned and operated by the East Bay Regional Park District (EBRPD). The trail is part of the San Francisco Bay Trail, a planned 500–mile recreational trail network ringing the Bay, approximately 330 miles of which have been completed.

The site is located within the “Port Area” of the City of Oakland, and within the Oakland Airport Business Park, first established as the “Port of Oakland Industrial Park” by the Board of Port Commissioners under Port Ordinance 1343 in 1966 and renamed the “Oakland Airport Business Park in 1975. It is also within the Coliseum/Hegenberger Planning District of the Coliseum Area Redevelopment Project Area established by the City of Oakland in 1995, and expanded to a total of 6,764 acres in 1997.

Primary access to the site would be via Hegenberger Road, which is a major arterial providing connection between I–880 and Oakland International Airport. Hegenberger Road is lined with a variety of commercial uses, many of which provide direct and indirect support to the airport, such as hotels, restaurants, and private offsite airport parking lots with shuttle service to the airport. A number of office buildings, up to eight stories in height, also line Hegenberger Road. Secondary access to the site would be via Pardee Drive, which provides access to distribution, warehouse, and light industrial land uses.
Figure 1-1
Project Location
The project site is an interior flag-shaped lot located approximately 270 feet west of Hegenberger Road and approximately 390 feet north of Pardee Drive. The vacant lot is level, at a uniform elevation of 7 feet above mean sea level. The surface of the site is covered with weeds interspersed with patches of exposed soil. A 6-foot–high chain link fence surrounds the main portion of the site. The “flagpole” section of the site, which would provide vehicular access to the site from Pardee Drive, is currently used as a driveway and would provide a row of parking spaces for the proposed project. Standpipes, apparently demarking groundwater monitoring wells, are located in the southwest and northeast corners of the site. There are no other improvements on the site. Existing views of the site are depicted on Figure 1-2.

Existing commercial development surrounds the project site. Immediately to the east, fronting on Hegenberger Road, is a Harley Davidson motorcycle sales and service facility. Parking along the north side of this building would be shared with the proposed project, as described in the preceding section. Offices and parking for Northern California Carpenters is located immediately north and northeast of the project site. Just north of this building is the San Leandro Creek and recreation trail. Adjacent to the west of the project site, accessed via Pardee Drive, is the Comcast Customer Service Center, including an office building and a parking lot for company service vans, shown on Figure 1-2. West of this facility is the UPS Distribution Center. At the western terminus of Pardee Drive are three freight/warehouse facilities, with MLK Park located beyond, about 1,900 feet northwest of the project.

Immediately to the south of the project is a large fenced parking lot for Francesco’s Restaurant, which is at the northwest corner of Pardee Drive and Hegenberger Road. The south side of Pardee Drive is lined with a variety of uses, including offices for the International Longshore and Warehouse Union Local 6, Oakland Fire Department Engine No. 27, U.S. Postal Service Airport Station, and FedEx Worldwide Service Center.

The east side of Hegenberger Road in the vicinity of the project is developed with a six-story Red Lion Hotel, a tire sales and service center, and a sports bar with various light industrial uses lining Hegenberger Place. South of Pardee Drive, Hegenberger Road is lined with a four-story Holiday Inn & Suites, Hilton Hotel, Econolodge Inn & Suites, and a Speed Oil Change business. A variety of private airport parking facilities are located within a half-mile radius of the project site.

1.3 Project Characteristics

The project sponsor proposes to construct a five-story, 140-room hotel on an approximately 1.95 acre (84,953 sq. ft.) parcel at 195 Hegenberger Road. The proposed hotel would be a free-standing 65-foot tall structure and would include parking for 139 vehicles (Figure 1-3).

The proposed hotel would provide 62 king rooms, 70 double king rooms and 8 wheelchair accessible rooms\(^2\) 12 rooms would contain provisions for the hearing impaired. The main floor would have 16 guest rooms and the second through fifth floors would each contain 31 rooms each.

\(^2\) Accessible rooms would comply with the Americans with Disabilities Act (ADA) for wheelchair access.
Figure 1-2
Aerial View of Project Site
The ground floor of the hotel would include a public lobby, 16 guest rooms, an 80-seat meeting room (1,938 sq. ft.), a lounge and bar, restaurant and buffet area, exercise room, an outdoor swimming pool, and an outside patio. The building would also provide an employee break room, laundry, food preparation area, offices, miscellaneous work areas, electrical and mechanical rooms, and various storage rooms. Access to the upper stories would be provided by two centrally-located elevators and stairways at the east and south ends of the L-shaped building.

The exterior architecture would have a contemporary design with a large, 6 feet by 35 feet, distinctive illuminated SpringHill Suites Marriott logo sign distinguishing the front entrance and an identical illuminated sign mounted on the south side. Two smaller, 7 feet by 18 feet, illuminated mounted signs would also be located on the east and southwest sides of the building, where they would be generally visible from Hegenberger Road and Pardee Drive over the top of the intervening building. Additional signage includes two 15-foot high pole sign, one located at Pardee Drive and another at Hegenberger Road, and a 6-foot high monument sign on Hegenberger Road at the access point from Hegenberger Road to the hotel driveway. All of these signs would require a variance from the Port of Oakland from the Port’s Land Use and Development Code on standards for Business, Directional, Realty, and Special signs. Freestanding (i.e., pole) signs are limited to 10 feet, directional signs are limited to 4 feet, and wall mounted signs are permitted on two building frontages only. One tree would be removed at the location of the pole sign off of Hegenberger Road and replanted with annuals. The building would be finished with stucco and decorative plastering and simulated brick/stone at lower level. The windows will be vinyl, dual glazed glass.

1.3.1 Circulation and Parking

Parking would be located on all four sides of the building. A total of 139 off-street parking spaces would be provided, including 87 full-size spaces, 34 compact spaces, 5 handicap spaces, and 13 reciprocal spaces adjacent to the driveway easement from Hegenberger Road, to be shared with the business located immediately east of the project site. A porte-cochere would cover the primary building entrance on the north side of the building. An enclosed trash and recyclables collection area would be located in the southeast corner of the site.

3 A covered main entrance to the building for vehicles to pass through.
1.3.2 Landscaping
A Landscape Plan has been developed for the project site that would introduce approximately 91 trees to the site and numerous shrubs, vines and ground cover. This vegetation would be installed along the perimeter of the parking spaces and around the perimeter of the hotel building. Biofiltration swales would be constructed at the corners of the hotel building as well. The Landscaping Plan would be subject to review and approval by the Port’s Design Review Committee.

1.3.3 Lighting
A lighting plan was prepared in compliance with the Port’s Exterior Lighting Policy (2003). The plan features 18 20-foot pole light fixtures around the perimeter of the building, and nine pathway bollard lights around the pool courtyard and entrance area. Additional exterior fixtures would be attached to the sides of the building. Light spill from these fixtures would remain within the hotel boundary.

1.3.4 Project Operation
The project would include secure enclosed structures to house recycling and trash containers. The project site would be regularly monitored by hotel landscape/maintenance staff to ensure that trash would not collect outside the refuse structures. During construction and operation, trash and other waste would be regularly collected and properly disposed or recycled by a certified waste management company. During hotel operations, hotel management would contract with a local waste management company to provide collection services.

East Bay Municipal Utility District (EBMUD) water is available to the project using existing waterlines. The project would connect to an existing sewer main on site. Drainage would be provided by biofiltration located at the corners of the hotel building, pervious pavers and flow-through planters. Stormwater would flow through these filtration systems before it is channeled to the site drainage system.

1.3.5 Construction
Construction is expected to commence in August 2014 and last for 15 months. The project sponsor will require construction contractors to limit standard construction activities as required by the City of Oakland Building Department. Such activities are generally limited to between 7:00 a.m. and 7:00 p.m. Monday through Friday. The number of construction workers would be approximately 10-25 workers per day during non-peak construction and 25-40 workers per day during peak construction. No construction activities will be allowed on weekends until after the building is enclosed, without prior authorization of the Port of Oakland, and no extreme noise generating activities shall be allowed on weekends and holidays. Construction activities for the project would include soil excavation, trenching, and compaction. No soil would be imported or exported from the site and all excavated material would be utilized on site. Construction vehicles and equipment required include a concrete truck, material and supplies delivery trucks and
trailers, boom vehicles, and forklifts. The project would not require pile driving. The construction staging area would be on-site.

1.4 Report Organization

This report is organized as follows:

Section 1, Project Description, provides an introduction to the project with project background and discusses the proposed improvements.

Section 2, Environmental Checklist Form, presents the CEQA Initial Study Environmental Checklist, and analyzes environmental impacts resulting from the project and describes the mitigation measures that would be incorporated into the project to avoid or reduce impacts to less-than-significant levels.

1.5 Other Approvals

The project site is located within the Port land use jurisdiction. For the purpose of the Initial Study, the Port is the Lead Agency responsible for approval of the Initial Study. Design review and other discretionary planning approvals for the project are the responsibility of the Port.

The project would be required to comply with the City of Oakland’s General Plan. The project site is classified under the City of Oakland’s General Plan as Business Mix (1998). The project would comply with the land use classifications for the site as well as density requirements for such uses as specified in the General Plan.

Because of the site’s proximity to Oakland International Airport, the proposed project is subject to the Alameda County Airport Land Use Policy Plan guidelines related to building height. The project would comply with the Alameda County Airport Land Use Policy Plan guidelines.

References

Project plans and descriptions.

City of Oakland, Oakland General Plan Land Use and Transportation Element (LUTE), March 24, 1998.
This page intentionally left blank
SECTION 2
Environmental Checklist – Initial Study

1. **Project Title:** 195 Hegenberger Road

2. **Lead Agency Name and Address:**
 Port of Oakland
 530 Water Street
 Oakland, CA 94612-1924

3. **Contact Person and Phone Number:**
 Colleen Liang
 Port Associate Environmental Scientist
 (510) 627-1198
 cliang@portoakland.com

4. **Project Location:**
 The project site is located at 195 Hegenberger Road in Oakland, California, approximately 3,400 feet south of Interstate 880. The site is situated on an interior parcel set back approximately 270 feet west of Hegenberger Road and approximately 390 feet north of Pardee Drive.

5. **Assessor’s Parcel Numbers:** 042-4420-014

6. **Project Sponsor’s Name and Address:**
 Mike Bhukhan
 510-247-1466
 Monarch Equity Investments, Inc
 30073 Skylark Court
 Hayward, CA 94544

7. **General Plan Designation(s):** Business Mix

8. **Zoning Designation(s):** C-36/S-4 Boulevard Service/Design Review

9. **Description of Project:**
 The project sponsor, Monarch Equity Investments, Inc., proposes to construct a 140-room hotel, located about one mile south of the proposed project. The five-story hotel would occupy an 84,953-square-foot (sq. ft.) (1.95 acres) interior lot set back approximately 270 feet west of Hegenberger Road and approximately 390 feet northeast of Pardee Drive. Vehicular access to the site would be provided by recorded driveway easements from both Hegenberger Road and Pardee Drive.\(^\text{4}\)

\(^{4}\) Note that the flag-shaped lot has a northeast-southwest orientation. Directional information presented in this report is based on the absolute direction.
The proposed building would have a footprint of 19,380 sq. ft. and would provide a total building area of 95,927 sq. ft. Based on the total area of the site, the building would have a floor area ratio (FAR) of 1.13. In addition to 140 guest rooms, the hotel would include a 1,928 sq. ft. meeting room with a capacity of 80 seats, a restaurant, a bar/lounge, a small gym with exercise equipment, a pool, and an outdoor patio. The building would also provide an employee break room, laundry, food preparation area, offices, miscellaneous work areas, electrical and mechanical rooms, and various storage rooms.

10. Other public agencies whose approval is required (e.g., permits)

Other approvals would be required from the following agencies:

- Alameda County Airport Land Use Commission
- Federal Aviation Administration (FAA)
- City of Oakland Building Department
- State Water Resources Control Board
2.1 Environmental Factors Potentially Affected

Topics that do not have significant impacts as determined through the analyses in this Initial Study will not be looked at further in the EIR for this project. The analysis in this Initial Study determined that effects associated with Aesthetics, Biological Resources, Cultural Resources, Hydrology, and Noise would involve "Potentially Significant" impacts that would be reduced to "Less than Significant" with incorporation of mitigation measures. The mitigation measures identified in this Initial Study will be carried forward to the Mitigation Monitoring and Reporting Program which must be adopted in connection with project approval to ensure that mitigation measures are implemented.

The proposed project could potentially affect the environmental factor(s) checked below. The following pages present a more detailed checklist and discussion of each environmental factor.

☑ Aesthetics
☑ Biological Resources
☐ Greenhouse Gas Emissions
☐ Land Use and Land Use Planning
☐ Population and Housing
☐ Transportation and Traffic
☐ Agriculture and Forestry Resources
☐ Cultural Resources
☐ Hazards and Hazardous Materials
☐ Mineral Resources
☐ Public Services
☐ Utilities and Service Systems
☐ Air Quality
☐ Geology, Soils and Seismicity
☐ Hydrology and Water Quality
☐ Noise
☐ Recreation
☐ Mandatory Findings of Significance

Determination:

On the basis of this initial study:

☐ I find that the proposed project COULD NOT have a significant effect on the environment, and a NEGATIVE DECLARATION will be prepared.

☐ I find that although the proposed project could have a significant effect on the environment, there will not be a significant effect in this case because revisions in the project have been made by or agreed to by the project proponent. A MITIGATED NEGATIVE DECLARATION will be prepared.

☑ I find that the proposed project MAY have a significant effect on the environment, and an ENVIRONMENTAL IMPACT REPORT is required.

☐ I find that the proposed project MAY have a "potentially significant impact" or "potentially significant unless mitigated" impact on the environment, but at least one effect 1) has been adequately analyzed in an earlier document pursuant to applicable legal standards, and 2) has been addressed by mitigation measures based on the earlier analysis as described on attached sheets. An ENVIRONMENTAL IMPACT REPORT is required, but it must analyze only the effects that remain to be addressed.

☐ I find that although the proposed project could have a significant effect on the environment, because all potentially significant effects (a) have been analyzed adequately in an earlier EIR or NEGATIVE DECLARATION pursuant to applicable standards, and (b) have been avoided or mitigated pursuant to that earlier EIR or NEGATIVE DECLARATION, including revisions or mitigation measures that are imposed upon the proposed project, no further environmental documentation is required.

Signature

Date

For: Richard Sinkoff, Environmental Programs and Planning Division Director, Port of Oakland
2.2 Environmental Checklist

2.2.1 Aesthetics

<table>
<thead>
<tr>
<th>Issues (and Supporting Information Sources):</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. AESTHETICS — Would the project:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Have a substantial adverse effect on a scenic vista?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>b) Substantially damage scenic resources, including, but not limited to, trees, rock outcroppings, and historic buildings within a state scenic highway?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>c) Substantially degrade the existing visual character or quality of the site and its surroundings?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>d) Create a new source of substantial light or glare which would adversely affect daytime or nighttime views in the area?</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

Discussion

a, b) **Less than Significant.** The project site is located in an urbanized area east of Oakland International Airport and west of Interstate 880 (I-880), on an interior lot bounded by Pardee Drive and Hegenberger Road. There are no scenic vistas in the immediate vicinity of the project site, which is located in an area of urbanized commercial, light industrial, and transportation-related development. A variety of predominantly one- and two-story retail, restaurant, community service, and transportation land uses are located in proximity to the site and provide the surrounding visual background. In addition, a six-story hotel is located about 450 feet southeast of the site and a four-story hotel is located about 700 feet south of the site, both of which are visible from the project site, over the tops of shorter intervening buildings. Public views of the project site occur along Hegenberger Road and Pardee Drive.

Scenic resources in the project vicinity include long-range views of the developed Oakland hills and Oakland Estuary. Views of the Oakland hills from the project site are available above intervening development, and although the Oakland Estuary is in proximity to the project site, it is not visible from the site due to adjacent development.

The proposed project would change the visual character of the site; however, the proposed 95,927 square foot building would be consistent with existing development in the vicinity in terms of scale, design, and use, and therefore would not result in a significant impact on the visual quality of the site.

Existing foreground views from the project site consist of neighboring parking lots and the backs or sides of one- and two-story buildings. These views are representative of the similar views available from surrounding properties. While the addition of a five-story hotel would block some of these views, there are no scenic vistas that would be blocked.
The newly constructed BART Oakland Airport Connector elevated railway track is also visible from the project site and blocks some of the long range views to the northeast. Furthermore, given the nature of the surrounding land uses, the only nearby stationary visual receptors whose views would be blocked would be occupants of the two-story office building immediately north of the site.

The San Leandro Creek Trail, which is part of MLK Park, lies approximately 300 feet northeast of the project site. Views from the trail in the direction of the project site are obscured by the two-story Northern California Carpenter’s Union building, trucks and storage containers in the UPS parking lot, utility poles, and a few trees. While the proposed hotel may be visible in the background, it would not be impacting a scenic resource or prominent view shed from this angle.

Regulatory policies identified in the City of Oakland General Plan Open Space, Conservation and Recreation Element of the General Plan pertaining to the protection of scenic resources in the City would be applicable to the proposed project. Stated in the General Plan (Policy OS-10.2), new development should minimize “adverse visual impacts” and encourage “opportunities for new vistas and scenic enhancement,” and Policy OS-10.3 promotes enhancement to the City’s underutilized visual resources, which include waterfronts, creeks, the San Leandro Bay, as well as architecturally significant buildings, major thoroughfares, and landmarks (City of Oakland, 1996).

There are no designated scenic vista points in proximity to the project site and, therefore, the project would not displace or obstruct views from a scenic vista point. Therefore, the proposed project would not result in a substantial adverse effect on a scenic vista or scenic resources, and would be less than significant.

c) **Less than Significant.** The project site is located within the Oakland Airport Business Park development area, composed of a built-up, urban environment with a mix of wholesale, freight, mail, and package distribution terminals, visitor-serving retail uses (including hotels and restaurants), other commercial land uses that complement the nearby airport, and open space and recreational uses. The site’s immediate neighbors are a Harley-Davidson Motorcycle sales and service facility to the east, a Comcast facility and parking lot to the west, a parking lot associated with Francesco’s Restaurant to the south, and the Northern California Carpenter’s Union to the north. The project site is currently a vacant lot. The proposed project would alter the visual character of the project site, as the proposed hotel would be constructed to enhance the subject property and complement neighboring uses. The project would construct a five-story, contemporary design hotel with landscaping on the site. Overall, the project site would be improved with the addition of the proposed project because the site, under existing conditions is underutilized. The proposed hotel would be compatible with other buildings in the project vicinity with its contemporary architecture style, height, and bulk.

As described in the Project Description, two illuminated Springhill Suites Marriott logo signs, 6 feet by 35 feet, located at the north and south sides distinguishing the front
entrance and two identical illuminated signs, approximately 7 feet by 18 feet would be mounted on the south and east sides of the building where they would be generally visible from Hegenberger Road over the top of the intervening building. Additional signage include two 15-foot high pole signs located at Pardee Drive and Hegenberger Road as well as a 4 feet by 5 feet 6-foot high monument sign on Hegenberger Road at the access point from Hegenberger Road to the hotel driveway. The Port’s *Land Use and Development Code for the Oakland Airport Business Park* stipulates requirements for signage. Sign design shall be submitted as part of the Development Permit application to the Port for approval. Wall signs may be placed on no more than two building frontages. Free-standing signs such as poles are limited to a maximum height of 10 feet in the Commercial Corridor of the Oakland Airport Business Park. As described in the Project Description, the Project would pursue a variance from the Port’s code for the hotel signs. The procedure for a variance requires the project applicant to submit a variance application containing evidence for the support of the variance.

In addition, the proposed project would adhere to the landscaping requirements under the Port of Oakland’s *Land Use and Development Code* (2011). As indicated in the Port’s Code, the front setback area of the subject property would be completely landscaped from the curb line to the setback line (with the exception of sidewalks and driveways), and side lot setbacks would also be landscaped or paved. Importantly, all landscaped areas would be maintained, cleaned, and free from weeds and debris at all times. The project sponsor would also be required to comply with additional Port-approved regulations for the placement of trees in landscaped areas, appropriate landscaping in parking areas, and to commit to a three-year inspection of all onsite landscaped areas. The landscape plan for the proposed hotel is shown in Figure 2-1 and would introduce approximately 90 trees to the site and numerous shrubs, vines and ground cover. This vegetation would be installed along the perimeter of the parking spaces and around the perimeter of the hotel building.

Although visual quality is subjective, given that the proposed project would be comparable to adjacent existing development, it can be concluded that the proposed hotel would not result in a substantial negative aesthetic effect, and that it would not substantially degrade the visual character of the site and its surroundings. Furthermore, the project would include landscaping that would comply with standards and regulations established by the Port of Oakland’s Land Use and Development Code. Therefore, the project’s impact on visual quality and character would be less than significant.

d) **Less than Significant with Mitigation.** The proposed building façades would be finished with stucco and decorative plastering and simulated brick/stone at lower level. The windows will be
Figure 2-1
Landscape Plan

Planting Legend:

Symbol	Latin Name	Common Name	Size	Quan.	Spacing
Trees
- Acer palmatum ‘Bloodgood’ | Red Japanese Maple | 24" box | 15 | per plan |
- Geijera parvifolia | Australian Willow | 24" box | 29 | per plan |
- Maytenus boschas | Mayten Tree | 24" box | 13 | per plan |
- Pistacia c. ‘Keith Davey’ | Chinese Pistache | 24" box | 16 | per plan |
- Platanus racemosus | California Sycamore | 24" box | 7 | per plan |
- Rhaphiolepis ‘Majestic Beauty’ | NCN | 15 gal. | 11 | per plan |

Shrubs, Vines and Ground Covers
- Agapanthus ‘Rancho White’ | Dwarf Lily-of-the-Valley | 1 gal. | 111 | 1.5' |
- Baccharis pilularis ‘Twin Peaks’ | Coyote Brush | 1 gal. | -- | 5' |
- Lantana monteviensis | Trailing Lantana | 1 gal. | 12 | 4' |
- Muhlenbergia rigens | Deer Grass | 1 gal. | 264 | 3' |
- Myoporum parvifolium | Prostrate Myoporum | 1 gal. | -- | 6' |
- Rhaphiolepis l. ‘Ballerina’ | Indian Hawthorn | 1 gal. | 294 | 3' |
- Trachospermum asiaticum | Asian Jasmine | 1 gal. | -- | 2.5' |
- Phormium ‘Jubilee’ | New Zealand Flax | 1 gal. | 147 | 3' |
- Podocarpus macrophyllus ‘Makfi’ | Dwarf Yew Pine | 5 gal. | 39 | 4' |
- Xylosma congestum | Shiny Xylosma | 5 gal. | 272 | 4' |
vinyl, dual glazed glass. The stucco and plastering would be dark earth-tone with articulations of the building in a lighter color to break-up the mass of the building.

The project is located in a built-out urban environment that includes existing sources of light and glare associated with nearby land uses. Nearby sources of light include exterior lighting on commercial and residential buildings, street lighting on the adjacent Hegenberger Road and Pardee Drive, passing vehicle headlights, and outdoor lighting on surface parking lots and buildings. Currently, there are no existing sources of light on the project site.

The proposed project would develop the vacant site, and generate night lighting, which would be visible from the surrounding area. With respect to daytime glare, the proposed hotel would not be covered in reflective surfaces and would not use oversize windows or large expanses of reflective glass. As discussed in Section 10, Land Use and Planning, the project site is within the Port of Oakland’s Oakland Airport Business Park, thus the proposed project would be required to comply with the Port of Oakland Land Use and Development Code’s standards and regulations for the Oakland Airport Business Park. The project would not require City Planning Commission Design Review approval. Rather, the project’s architectural design would be subject to review by the Port Permit Coordinator.

Further, the project site would be located within the Oakland International Airport Land Use Compatibility Plan (ALUCP), and any new sources of light and glare from development could pose a danger and hazard to pilots of aircraft during take-off or landing at Oakland International Airport (Alameda, 2010).

Interior nighttime lighting of the hotel would be contained by window coverings, fixture shades, and intervening building surfaces, and would not constitute a source of substantial nighttime glare. The Port of Oakland would require the project, as part of the design review phase, to adhere to the “Exterior Lighting Policy” which establishes lighting criteria that minimizes light spillage and pollution (Port of Oakland, 2003). Exterior lighting would include 18 20-foot pole light fixtures located around the perimeter of the building, nine pathway bollard lights around the interior courtyard and entrance area, and exterior fixtures attached to the sides of the building. These lights would be designed with downward-pointing lights, cut-off fixtures, dimmers, side shields, and visors.

The proposed project would develop the vacant site, and generate night lighting and glare, which would be visible from the surrounding area; however, the new lighting would be comparable to that from existing buildings in the vicinity, and would not exceed lighting levels common in urban areas. The amount and location of onsite lighting would be addressed during the Port’s Design Review process as required by Mitigation Measure AES-1. For purposes of safety and security, onsite light fixtures would be required to shield the light source, aiming the cone of light directly downward, preventing direct viewing of the bulb from offsite receptors, while illuminating the
intended location. The proposed project would not introduce any design features that would result in substantial light and glare during daytime and nighttime periods, nor would the proposed project require the construction of, or use of, any high-intensity lighting that would affect neighboring properties or aircraft flying over the site. By implementing Mitigation Measure AES-1 would eliminate spillage of light and glare onto adjacent properties, including the nearby San Leandro Creek Staging Area trail in MLK Park. While the project would generate an incremental increase in light generated on the site compared to existing conditions, the project would not generate a substantial new source of light and glare that would adversely affect day or nighttime views in the area, therefore the impact would be less than significant.

Mitigation Measure AES-1: All lighting installations shall be designed and installed to be fully shielded (full cutoff) and to minimize glare and obtrusive light by limiting outdoor lighting that is misdirected, excessive, or unnecessary, except as in the exceptions below, and shall have a maximum lamp wattage of 250 watts for commercial lighting, or 100 watts incandescent. The location and design of all exterior lighting shall be shown on the site plan submitted to and approved by the Port during the Design Review. Lighting that is exempt includes:

- Lighting in swimming pools and other water features.
- Exit signs and other illumination required by building codes.
- Lighting for stairs and ramps, as required by the building code.
- Signs that are regulated by the sign code.
- Holiday and temporary lighting (less than thirty days use in any 1 year).
- Low-voltage landscape lighting, but such lighting should be shielded in such a way as to eliminate glare and light trespass.

References

2.2.2 Agricultural and Forest Resources

<table>
<thead>
<tr>
<th>Issues (and Supporting Information Sources):</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
</table>

2. AGRICULTURAL AND FOREST RESOURCES —

In determining whether impacts to agricultural resources are significant environmental effects, lead agencies may refer to the California Agricultural Land Evaluation and Site Assessment Model (1997) prepared by the California Department of Conservation as an optional model to use in assessing impacts on agriculture and farmland. In determining whether impacts to forest resources, including timberland, are significant environmental effects, lead agencies may refer to information compiled by the California Department of Forestry and Fire Protection regarding the state’s inventory of forest land, including the Forest and Range Assessment Project and the Forest Legacy Assessment project; and forest carbon measurement methodology provided in Forest Protocols adopted by the California Air Resources Board. **Would the project:**

a) Convert Prime Farmland, Unique Farmland, or Farmland of Statewide Importance (Farmland), as shown on the maps prepared pursuant to the Farmland Mapping and Monitoring Program of the California Resources Agency, to non-agricultural use? ☐ ☐ ☐ ☒

b) Conflict with existing zoning for agricultural use, or a Williamson Act contract? ☐ ☐ ☐ ☒

c) Conflict with existing zoning for, or cause rezoning of, forest land (as defined in Public Resources Code section 12220(g)), timberland (as defined by Public Resources Code section 4526), or timberland zoned Timberland Production (as defined by Government Code section 51104(g))? ☐ ☐ ☐ ☒

d) Result in the loss of forest land or conversion of forest land to non-forest use? ☐ ☐ ☐ ☒

e) Involve other changes in the existing environment which, due to their location or nature, could result in conversion of Farmland to non-agricultural use or conversion of forest land to non-forest use? ☐ ☐ ☐ ☒

Discussion

a - e) **No Impact.** The project site is located in an urbanized area, as defined by CEQA Guidelines, Section 21071. The project site does not include active agricultural uses, nor is the site zoned for agricultural uses. The project site is designated by the California Department of Conservation as urban and built-up land defined as “land occupied by structures with a building density of at least one unit to one and one-half acres” as shown on the Important Farmland Map for Alameda County (2010). The project would not include, nor promote the modification to, any existing active agricultural uses, nor is the site zoned for agricultural uses. Furthermore, the project would not contribute to, nor result in the loss or conversion of forest land, nor result in any impacts to farmland or any property subject to Williamson Act. The proposed project would result in no impact to agricultural and forest resources.

References

2.2.3 Air Quality

Where available, the significance criteria established by the applicable air quality management or air pollution control district may be relied upon to make the following determinations.

Would the project:

a) Conflict with or obstruct implementation of the applicable air quality plan?

b) Violate any air quality standard or contribute substantially to an existing or projected air quality violation?

c) Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is non-attainment under an applicable federal or state ambient air quality standard (including releasing emissions which exceed quantitative thresholds for ozone precursors)?

d) Expose sensitive receptors to substantial pollutant concentrations?

e) Create objectionable odors affecting a substantial number of people?

Discussion

a) **Potentially Significant.** The project site is within the San Francisco Bay Area Air Basin (Bay Area), which is currently designated as a nonattainment area for state and national ozone standards (8-hour), state particulate matter (PM10 and PM2.5) standards, and federal PM2.5 (24-hour) standard. The Bay Area Air Quality Management District’s (BAAQMD) 2010 Clean Air Plan (BAAQMD, 2010b) is the applicable Clean Air Plan (2010 CAP) that has been prepared to address ozone nonattainment issues. Impacts to Air Quality resulting from construction and operation of the proposed project will be further analyzed in the EIR.

b) **Potentially Significant.** The Bay Area Air Basin experiences occasional violations of ozone and particulate matter (PM10 and PM2.5) standards. Construction associated with project development would involve use of equipment and materials that would emit ozone precursor emissions (i.e., reactive organic gases (ROG) and nitrogen oxides (NOx)). Construction activities would also result in the emission of other criteria pollutants from equipment exhaust, construction-related vehicular activity, and construction worker automobile trips. Emission levels for these activities would vary depending on the number and type of equipment, duration of use, operation schedules, and the number of construction workers. Criteria pollutant emissions of ROG and NOx from these emission sources would incrementally add to the regional atmospheric loading of ozone precursors during project development. Impacts to Air Quality resulting from construction and operation of the proposed project will be further analyzed in the EIR.
c) **Potentially Significant.** According to the BAAQMD, no single project is sufficient in size to, by itself, result in nonattainment of ambient air quality standards. Instead, a project’s individual emissions contribute to existing cumulatively significant adverse air quality impacts. In addition, according to the BAAQMD CEQA Air Quality Guidelines, if a project exceeds the identified significance thresholds, its emissions would be cumulatively considerable, resulting in significant adverse air quality impacts to the region’s existing air quality conditions (BAAQMD, 2010a). Alternatively, if a project does not exceed the identified significance thresholds, then the project would not be considered cumulatively considerable and would result in less-than-significant air quality impacts. Impacts to Air Quality resulting from construction and operation of the proposed project will be further analyzed in the EIR.

d) **Potentially Significant.** Construction activities could expose sensitive receptors to pollutant concentrations, principally from short-term diesel exhaust emissions (DPM), which are toxic air contaminants (TACs), from onsite heavy-duty equipment. Impacts to Air Quality resulting from construction and operation of the proposed project will be further analyzed in the EIR.

e) **Less than Significant.** As a general matter, the types of land use development that pose potential odor problems include wastewater treatment plants, refineries, landfills, composting facilities and transfer stations. No such uses would occupy the project site. However, an outdoor pool is associated with the site; pool maintenance chemicals would be used in small qualities and would not generate a strong odor. Therefore, the proposed project would not create objectionable odors that would affect a substantial number of people. The impact would be less than significant, and this impact will not be further addressed in the EIR.

References

2.2.4 Biological Resources

Issues (and Supporting Information Sources):

<table>
<thead>
<tr>
<th>4. BIOLOGICAL RESOURCES — Would the project:</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special-status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Game or U.S. Fish and Wildlife Service?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>b) Have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, regulations or by the California Department of Fish and Game or U.S. Fish and Wildlife Service?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>c) Have a substantial adverse effect on federally protected wetlands as defined by Section 404 of the Clean Water Act (including, but not limited to, marsh, vernal pool, coastal, etc.) through direct removal, filling, hydrological interruption, or other means?</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>d) Interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites?</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>e) Conflict with any local policies or ordinances protecting biological resources, such as a tree preservation policy or ordinance?</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>f) Conflict with the provisions of an adopted Habitat Conservation Plan, Natural Community Conservation Plan, or other approved local, regional, or state habitat conservation plan?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
</tbody>
</table>

Discussion

On November 19, 2013, an ESA biologist conducted a reconnaissance-level survey of the project site in order to characterize existing conditions within the study area, assess habitat quality, and assess the potential for presence of special-status species and sensitive natural communities. The majority of the project site consists of an unmaintained ruderal (weedy) lot surrounded on all sides by commercial and light industrial development with paved driveways and parking lots (see Figure 1-2, Aerial View of Project Site in the Project Description). The flagpole portion of the project is an asphalt driveway providing access to the site from Pardee Drive which is located to the south. Shared parking spaces are perpendicular to the driveway on the southern property border. Maintained, vegetated bioswales, constructed to capture and filter stormwater runoff from the asphalt, are present along the northwest border of the driveway. The majority of the project site comprises overgrown, non-native grassland vegetation including species typical of disturbed areas. Species observed during the reconnaissance survey include wild oats (*Avena barbata*), Mediterranean barley (*Hordeum marinum* ssp. *gussoneanum*), bristly ox-tongue (*Helminthotheca echioidea*), ripgut brome (*Bromus diandrus*), rabbit’s foot grass (*Polypogon monspeliensis*) and several other non-native grasses. Other coastal scrub and herbaceous plant species present within...
the project site are also largely non-native and include Himalayan blackberry (*Rubus armeniacus*), jubata grass (*Cordateria jubata*), stinkwort (*Dittrichia graveolens*), fat hen (*Atriplex prostrata*), cheeseweed mallow (*Malva parviflora*), curly dock (*Rumex crispus*), and black nightshade (*Solanum nigrum*), with few scattered natives such as coyote brush (*Baccharis pilularis*), annual fireweed (*Epilobium brachycarpum*), and saltmarsh sand spurry (*Spergularia marina*). A small stand of immature non-native trees including blackwood acacia (*Acacia melanoxylon*) and other unidentified species are present at the southeast corner of the vegetated lot where the parking spaces begin along the driveway. Immature non-native American sycamore (*Platanus occidentalis*) trees line the maintained bioswales along the northwest border of the project site.

The project site is located 400 feet south of a manmade channel that is the terminus to San Leandro Creek, prior to its discharge into San Leandro Bay. The Northern California Carpenter’s Union building separates the project site from this channel. The site is approximately 1,500 feet east of the Airport Channel and Bay Farm Island and 2,000 feet south of the main restoration and wetlands area of the East Bay Regional Park District’s (EBRPD) Martin Luther King, Jr. Regional Shoreline Park (MLK Park). Light industry and commercial businesses compose the dense urban environment to the south of the project site.

a) **Less than Significant.** The California Natural Diversity Database (CNDDB) documents 72 special-status plant and wildlife species within the San Leandro, Hunters Point, East Oakland, and West Oakland U.S. Geological Survey 7.5 minute topographic quadrangles, which surround the project site. Many of these are associated with vegetation communities or habitat not found within the project site. Special-status plants are not previously documented at this location and have only a low potential to occur considering the poor quality of the current vegetative community within the highly disturbed, urban environment (see Appendix A, Table B-1). Special-status animals are also not expected to occur on the project site for similar reasons (see Appendix A, Table B-1). Therefore, in general, implementation of the proposed project is not expected to result in adverse impacts on special-status plants or wildlife. This would be a less than significant impact.

While the project site is unlikely to support special-status species, several special-status wildlife species are known to be present in the natural areas in the vicinity of the project site, including the California clapper rail, a federal and state endangered species, and the western burrowing owl (*Athene cunicularia*), a California Species of Special Concern. Other special-status birds that may use nearby marshes for breeding purposes include the northern harrier (*Circus cyaneus*), California black rail (*Laterallus jamaicensis*), Alameda song sparrow (*Melospiza melodia pusillula*), and salt marsh common yellowthroat (*Geothlypis trichas sinuosa*). These and other bird species use wetlands and other natural habitat as a stopover in the Pacific Flyway migration corridor and some use these natural areas for breeding. The special status raptor and passerine species are only expected on a transient basis at the project site and are unlikely to use existing vegetation for nesting as more established and desirable habitat is present for foraging and nesting in the nearby MLK Park and wetland channels where some of these special status species are known to occur. Therefore the effect of development at the project site on special-
status species would be less than significant. Potential direct and indirect impacts and mitigation measures relating to migratory birds and breeding birds (both resident and migratory) are discussed in criterion d), below.

b) **Less than Significant.** There is no riparian habitat or other sensitive community type on the project site. The proposed project activities (construction and operation) would be confined to the project site as depicted on Figure 1-3, therefore the effect of the proposed project would be less than significant as it would not result in direct impacts to riparian or other sensitive communities. Sensitive communities within the project vicinity include the tidal estuaries of San Leandro Creek and Airport Channel as well as MLK Park which contains seasonal wetlands, which are also federal- and state-protected wetlands. Potential indirect impacts on these resources are discussed under c) below.

c) **Less than Significant with Mitigation.** There are no federal- or state-protected wetlands or waters within the proposed project site. Therefore, the proposed project activities (construction and operational) would not result in direct impacts to jurisdictional wetlands or waters. North of the project site are non-jurisdictional bioswales designed to capture storm water runoff from the parking lot. These swales deliver water through drop inlets to subterranean storm drains and culverts, eventually discharging to San Leandro Creek and ultimately San Leandro Bay. Runoff from the project site could potentially increase the transmittal of sediment, oil, diesel fuel, transmission fluids, and other toxic materials from hotel construction into these bioswales, which could result in temporary and indirect adverse effects to the jurisdictional waters of San Leandro Bay. Potential adverse indirect impacts to nearby jurisdictional waters would be mitigated by implementation of **Mitigation Measures HYD-1 and HYD-2**, required in *Hydrology and Water Quality*, which include preparation of a Stormwater Pollution Prevention Plan (SWPPP) and a project drainage plan. Measures included in the SWPPP are focused on reducing construction-related water quality impacts; the project drainage plan includes operation and performance standards to ensure all necessary maintenance of drainage facilities, including bioswales, is performed properly and in a timely manner. Implementation of these measures would ensure that proposed project impacts on these resources would be less than significant.

d) **Less than Significant with Mitigation.** No migratory wildlife corridors, migratory stopover sites, or native wildlife nursery sites are present onsite; thus, no direct impacts to these biological resources are expected. However, migratory bird corridors, stopover sites, and breeding bird sites are present in surrounding undeveloped areas, particularly in the wetlands north of the project site in MLK Park. Direct and indirect impacts on migratory and breeding birds are discussed in detail in the following paragraphs.

Migratory Birds. The San Francisco Estuary is designated as a Western Hemisphere Shorebird Reserve Network of international importance, because more than one million shorebirds use San Francisco Bay wetlands each winter, and between 300,000 and 900,000 shorebirds pass through San Francisco Bay during spring and fall migration.
periods. Additionally, more than 50 percent of the diving ducks in the Pacific Flyway winter in the shallow wetlands of the San Francisco Bay, and several species breed in the wetlands during the summer (Goals Project, 1999). The MLK Park in particular is a major wintering site for shorebirds, waterfowl, and other water birds, with numbers easily reaching the thousands during fall, winter, and spring.

Breeding Birds. Mature coyote brush, Himalayan blackberry shrubs, and dense grasses provide suitable nesting substrate for breeding birds. Most birds, their nests, and their eggs are protected under the federal Migratory Bird Treaty Act, Fish and Game Code 3513, and Fish and Game Code 3503. In addition, all raptors (eagles, hawks, and owls), their nests, and eggs are protected under Fish and Game Code 3503.5.

Sycamore trees, located along the northwest border of the site, and acacia trees located at the base of the flagpole portion of the site provide suitable habitat for nesting birds. Building eaves, awnings, and development landscaping surrounding the project site could also support nesting birds. Most native, breeding birds are protected under Section 3503 of the Fish and Game Code (Code), and raptors are protected under Section 3503.5 of the Code. In addition, both Section 3513 of the Code and the Federal Migratory Bird Treaty Act (16 U.S. Code, Sec. 703 Supp. I, 1989) prohibit the killing, possession, or trading of migratory birds. Finally, Section 3800 of the Code prohibits the taking of non-game birds, which are defined as birds occurring naturally in California that are neither game birds nor fully protected species. To the degree feasible, construction activities would be scheduled to avoid the nesting season between February 1 and August 31. In the event construction or vegetation removal must be performed during the nesting season, potential impacts to breeding or nesting special-status birds could be significant and would be minimized to less-than-significant levels with the implementation of Mitigation Measure BIO-1.

Mitigation Measure BIO-1: Preconstruction Nesting Bird Surveys. To the extent practicable, construction activities including vegetation and tree removal shall be performed between September 1 and January 31 in order to avoid breeding and nesting season for birds. If these activities cannot be performed during this period, pre-construction surveys for nesting birds shall be conducted by a qualified biologist.

Surveys shall be performed no more than 14 days prior to construction activities listed above in order to locate any active passerine nests within 250 feet of the project site and any active raptor nests within 500 feet of the project site. Vegetation removal and construction activities performed between September 1 and January 31 avoid the general nesting period for birds and therefore would not require preconstruction surveys.

If active nests are found on either the project site or within the 500-foot survey buffer surrounding the project site, no-work buffer zones shall be established around the nests in coordination with California Department of Fish and Wildlife (CDFW). In general, CDFW recommends a 250-foot construction exclusion zone around the nests of active passerine songbirds during the breeding season, and a
500-foot buffer for nesting raptors. These buffer distances are considered initial starting distances once a nest has been identified, and are sometimes revised downward to 100 feet and 250 feet, respectively, based on site conditions and the nature of the work being performed. These buffer distances may also be modified if obstacles such as buildings or trees obscure the construction area from active bird nests, or existing disturbances create an ambient background disturbance similar to the proposed disturbance.

No demolition, vegetation removal, or ground-disturbing activities shall occur within a buffer zone until young have fledged or the nest is otherwise abandoned as determined by the qualified biologist. If work during the nesting season stops for 14 days or more and then resumes, then nesting bird surveys shall be repeated, to ensure that no new birds have begun nesting in the area while work was stopped.

Potential for Bird Strike Impacts. Collisions with structures of various types are currently recognized as one of the leading causes of bird population declines worldwide (Brown et al., 2007). It is estimated that, in North America alone, millions of songbirds are killed due to collisions with buildings and other structures each year (Ogden, 1996). Daytime collisions occur most often when birds fail to recognize window glass as a barrier. Regardless of overall building height, the ground floor and first few stories of buildings present the greatest hazards to most birds; reflections of attractive ground-level features like vegetation draw birds toward glass surfaces and often result in collisions. Recent increases in glass surfaces used to allow more daylight within buildings can be considered a biologically meaningful issue, potentially affecting the viability of local and regional bird populations (Ogden, 1996). Transparent features – especially buildings where birds can see through two glass surfaces to vegetation on the other side – also attract birds and cause collisions. Vegetated areas and bodies of water provide potentially valuable stopover habitat for migratory birds. Open space areas adjacent to developed areas create bird habitats in the vicinity of proposed buildings and other facilities, potentially resulting in higher bird collision risks.

While specific avian flight routes in and out of San Leandro Bay are not known, and there is no local data on bird kills due to building collisions, the proposed project has the potential to result in collisions and avian mortality by introducing a new building where none currently exists. In addition, a growing recognition of the severity of the impact on migratory birds suggests that, whenever feasible, measures to reduce the risk of avian collisions should be incorporated in the construction and operations of buildings that are located in areas where the risk of collision may be heightened due to a number of risk factors, including location along a known migratory route, proximity to migratory stopover locations, proximity to open space and areas of natural habitat, and areas where low cloud ceilings are frequent (Brown et al., 2007). An increase in local bird kills resulting from the project would be considered a significant impact. However, this impact could be reduced to less-than-significant levels through implementation of Mitigation Measure BIO-2.
Mitigation Measure BIO-2: Particular attention should be paid to the ground level glazing where onsite landscaping could attract birds to the building. Bird strikes associated with building night lighting shall be minimized by:

- Dimming lights in lobbies, perimeter circulation areas, and atria;
- Turning off all unnecessary lighting by 11:00 p.m. through sunrise, especially during peak migration periods (mid-March to early June and late August through late October);
- Incorporating light-colored solar reflective window treatments into the hotel décor to reduce glass transparency;
- Avoiding use of flood lighting;
- Educating building management about the dangers of night lighting to birds.

e) Less than Significant with Mitigation. The City of Oakland has two ordinances protecting local natural resources. Oakland’s Creek Protection Ordinance (Oakland Municipal Code, Title 13, Chapter 13.16.120) requires a Creek Protection Permit for construction that would take place within 100 feet of the centerline of a creek. As mentioned above, the project site is located approximately 400 feet from the top of the bank of San Leandro Creek and therefore does not require a Creek Protection Permit.

Oakland’s Tree Protection Ordinance (Oakland Municipal Code, Title 12, Chapter 12.36) requires a permit for removal of any protected tree (12.36.040). Protected trees include coast live oak trees at least four inches in diameter when measured at four and a half feet above the ground (DBH); and any tree species that measures at least nine inches DBH, with the exception of eucalyptus species and Monterey pine trees. There are a few immature non-native trees that may require removal as part of the project located where the southwest corner of the vegetated lot meets the driveway, and one where the pole sign off of Hegenberger Road would be installed. None of these trees qualify for protection under the tree protection ordinance.

The lots surrounding the site are fully developed, isolating the site from the nearby open space. Mitigation measures, described above, would reduce potential indirect impacts on adjacent biological resources to less-than-significant levels and ensure that project implementation would not fundamentally conflict with the policies set forth in the Open Space, Conservation and Recreation Element of the Oakland General Plan (OSCAR).

f) No Impact. There are no adopted Habitat Conservation Plans, Natural Community Conservation Plans, or any other approved local, regional, or state habitat conservation plans that apply to the project site. However, on August 27, 2013, the U.S. Fish & Wildlife Service adopted a “Recovery Plan for Tidal Marsh Ecosystems of Northern and Central California.” The Recovery Plan delineates reasonable actions (e.g., habitat acquisition and/or restoration) that are believed to be required to recover and/or protect species identified in official federal lists as threatened or endangered. Implementation of
recovery plans is voluntary. Project-specific effects on species and/or habitat discussed in recovery plans is addressed separately through existing regulatory authority by local, state and/or federal agencies.

Extensive portions of the California coast are identified by the plan as a “Recovery Unit.” Figure III-17 of the plan identifies “Segment K” of the Recovery Unit and which includes nearly all of the shoreline in the City of Oakland; including San Leandro Creek. However, Figure III-17 does not delineate existing tidal marsh habitat or future tidal habitat restoration at the proposed project site. Existing conditions at the proposed project site reflect this as the adjacent properties are substantially developed with buildings, parking lots and ornamental landscaping.

Therefore, for the reasons explained above, the proposed project would result in no impact.

References

California Department of Fish and Wildlife (CDFW), California Natural Diversity Database Rarefind 4 online database query for the 7.5 minute topographic quadrangles of San Leandro, Hunters Point, Oakland East, Oakland West. Data accessed November 18, 2013.

2.2.5 Cultural Resources

<table>
<thead>
<tr>
<th>Issues (and Supporting Information Sources):</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. CULTURAL RESOURCES — Would the project:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Cause a substantial adverse change in the significance of a historical resource as defined in §15064.5?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>b) Cause a substantial adverse change in the significance of an archaeological resource pursuant to §15064.5?</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>c) Directly or indirectly destroy a unique paleontological resource or site or unique geologic feature?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>d) Disturb any human remains, including those interred outside of formal cemeteries?</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

Discussion

a) **No Impact.** A significant impact would occur if the project would cause a substantial adverse change to a historical resource, herein referring to historic-period architectural resources or the built environment, including buildings, structures, and objects. A substantial adverse change includes the physical demolition, destruction, relocation, or alteration of the resource.

ESA completed a records search at the Northwest Information Center (NWIC) of the California Historical Resources Information System on November 25, 2013 (File No. 13-0843). The review included the project area and a ½-mile radius. Previous surveys, studies, and site records were accessed. Records were also reviewed in the Historic Property Data File for Alameda County, which contains information on places of recognized historical significance including those evaluated for listing in the National Register of Historic Places, the California Register of Historical Resources, the California Inventory of Historical Resources, California Historical Landmarks, and California Points of Historical Interest. The purpose of the records search was to (1) determine whether known cultural resources have been recorded within the project vicinity; (2) assess the likelihood for unrecorded cultural resources to be present based on historical references and the distribution of nearby sites; and (3) develop a context for the identification and preliminary evaluation of cultural resources.

JRP Historical Consulting Services completed a Historic Architectural Survey Report for the BART to Oakland Airport Connector Project in September 2000 (JRP, 2000). This survey included the current project area vicinity and identified dates of construction for architectural resources. There are no historic-era buildings located within or immediately adjacent to the project site.

There are no additional potential historical resources in the project area vicinity. The proposed project would have no impact on historical resources.
b) **Less than Significant with Mitigation.** A significant impact would occur if the project would cause a substantial adverse change to an archaeological resource through physical demolition, destruction, relocation, or alteration of the resource.

The project area is within the traditional territory of the Ohlone people, also known as Costanoan (Levy, 1978: 485–495). The people collectively referred to by ethnographers as Costanoan were actually distinct sociopolitical groups that spoke at least eight languages of the same Penutian language group. The Ohlone occupied a large territory from San Francisco Bay in the north to the Big Sur and Salinas Rivers in the south. The primary sociopolitical unit was the tribelet, or village community, which was overseen by one or more chiefs. The project area is in the greater Chochenyo tribal area (Milliken, 1995). The nearest known ethnographic village site in the vicinity was Tuibun, located several miles south of the project area at the mouth of Alameda Creek. After European contact, Ohlone society was severely disrupted by missionization, disease, and displacement. Nevertheless, the Ohlone still have a strong presence in the San Francisco Bay Area, and are highly interested in their historic and prehistoric past.

Base maps at the NWIC indicate that several cultural resources studies have been completed in and adjacent to the project area (Chavez, 1979; Losee, 2009; JRP, 2000; Siskin and Plath, 2013; WSA, 2000a; WSA, 2000b).

One historic-era archaeological resource (CA-ALA-649H) has been identified approximately ⅓ mile (1,800 feet) southeast of the current project area. The site is an extensive subsurface historic-era refuse landfill area with artifacts dating between the 1940s thru the 1950s. The site was identified during construction monitoring for the Bay Area Rapid Transit Oakland Airport Connector Project (Siskin and Plath, 2013). The site location was historically in a narrow, shallow channel that meandered through an area of higher elevation; the location was ideal as a location for an informal refuse dump (USGS, 1899, 1914, 1942, 1947). Conversely, the current project area is located in an area that would have historically been at least 1,000 feet within marshland away from the higher shoreline. This area would not have been conducive for informal refuse dumping and a historic-era deposit is therefore not anticipated.

No prehistoric archaeological resources have been identified within the project area or within a ½-mile radius. N.C. Nelson identified three shell mound sites during his survey of the San Francisco Bay Area (1909). These sites are located approximately ¼ mile north of the project area. WSA (2000a and 2000b) inspected these site locations as they were recorded and found no surface evidence of these sites. The general area has been substantially developed since these sites were initially recorded and it is likely they have been destroyed, although shell mound sites may have significant components below the surface.

Geotechnical investigations completed for the proposed project indicate that approximately 4–5 feet of artificial fill overlies estuarine Bay Mud (TRC, 2013). This is consistent with geologic and topographic mapping (Witter et al., 2006; USGS, 1899, 1914, 1942, 1947). As
a recent deposit, artificial fill does not have the potential to contain prehistoric archaeological materials. As such, there is not a potential to identify prehistoric archaeological materials in artificial fill and an archaeological surface survey was not conducted. The artificial fill overlies estuarine Bay Mud. It has been noted that in general, Bay Mud deposits are not expected to contain buried archaeological deposits because they were formed in settings that were either submerged, or subject to regular tidal influence. As such Bay Mud deposits are generally estimated to have a low to very low potential for having buried sites (Meyer and Rosenthal in Byrd and Darcangelo, 2008).

Based on the results of the records and literature search, nearby site distribution, previous disturbance, and the geologic context in the project area it does not appear that the project has the potential to impact archaeological resources. However, the discovery of archaeological materials during ground disturbing activities cannot be entirely discounted. In the event of the discovery of any cultural resources during project construction activities, implementation of the following mitigation measure would reduce potential impacts to a less-than-significant level.

Mitigation Measure CUL-1: If prehistoric or historic-period archaeological resources are encountered, all construction activities within 100 feet would halt and the Port of Oakland would be notified. Prehistoric archaeological materials might include obsidian and chert flaked-stone tools (e.g., projectile points, knives, scrapers) or toolmaking debris; culturally darkened soil (“middens”) containing heat-affected rocks, artifacts, or shellfish remains; and stone milling equipment (e.g., mortars, pestles, handstones, or milling slabs); and battered stone tools, such as hammerstones and pitted stones. Historic-period materials might include stone, concrete, or adobe footings and walls; filled wells or privies; and deposits of metal, glass, and/or ceramic refuse. A Secretary of the Interior-qualified archaeologist would inspect the findings within 24 hours of discovery. If it is determined that the project could damage a historical resource or a unique archaeological resource (as defined pursuant to the CEQA Guidelines), mitigation would be implemented in accordance with PRC Section 21083.2 and Section 15126.4 of the CEQA Guidelines, with a preference for preservation in place. Consistent with Section 15126.4(b)(3), this may be accomplished through planning construction to avoid the resource; incorporating the resource within open space; capping and covering the resource; or deeding the site into a permanent conservation easement. If avoidance is not feasible, a qualified archaeologist would prepare and implement a detailed treatment plan in consultation with the Port of Oakland. Treatment of unique archaeological resources would follow the applicable requirements of PRC Section 21083.2. Treatment for most resources would consist of (but would not be limited to) sample excavation, artifact collection, site documentation, and historical research, with the aim to target the recovery of important scientific data contained in the portion(s) of the significant resource to be impacted by the project. The treatment plan would include provisions for analysis of data in a regional context, reporting of results within a timely manner, curation of artifacts and data at an approved facility, and dissemination of reports to local and state repositories, libraries, and interested professionals.
Mitigation Measure CUL-2: To further ensure protection of cultural resources during construction, the Port of Oakland’s Emergency Plan of Action for Discoveries of Unknown Historic or Archaeological Resources shall be provided to the Construction Contractor and shall be implemented during construction.

c) No Impact. A significant impact would occur if the project would destroy a unique paleontological resource or site, or a unique geologic feature. Paleontological resources are the fossilized evidence of past life found in the geologic record. Despite the tremendous volume of sedimentary rock deposits preserved worldwide, and the enormous number of organisms that have lived through time, preservation of plant or animal remains as fossils is an extremely rare occurrence. Because of the infrequency of fossil preservation, fossils—particularly vertebrate fossils—are considered to be nonrenewable resources. Because of their rarity, and the scientific information they can provide, fossils are highly significant records of ancient life.

The project area is underlain by artificial fill deposits over Bay Mud (Witter et al., 2006). This geologic deposit is not likely to yield significant paleontological remains, because they are surface deposits that are not considered fossil-bearing rock units. The proposed project would have no impact on paleontological resources.

d) Less than Significant with Mitigation. There is no indication from the archival research results that any part of the project area has been used for human burial purposes in the recent or distant past. It is unlikely that human remains would be encountered during construction of the proposed project. However, the possibility of inadvertent discovery cannot be entirely discounted, and would result in a potentially adverse impact. Implementation of Mitigation Measure CUL-3 would ensure that inadvertent discovery impacts to human remains would be reduced to a less-than-significant level.

Mitigation Measure CUL-3: In the event of discovery or recognition of any human remains during construction activities, such activities within 100 feet of the find would cease until the Alameda County Coroner has been contacted to determine that no investigation of the cause of death is required. The Native American Heritage Commission (NAHC) would be contacted within 24 hours if it is determined that the remains are Native American. The NAHC would then identify the person or persons it believes to be the most likely descendant from the deceased Native American, who in turn would make recommendations to the Port of Oakland for the appropriate means of treating the human remains and any grave goods.

References

Losee, Carolyn, Cultural Resources Analysis for Verizon Wireless #189547 “Doolittle” 77 Hegenberger Road, Oakland, Alameda County, CA. Prepared for EBI Consulting. On file (S-35943), NWIC, April 2009.

Northwest Information Center (NWIC), Cultural Resources Records Search for the Hegenberger Hotel, Alameda County (File No. 12-0843). On file, ESA, November 2013.

TRC Solutions (TRC), *Updated Geotechnical Recommendations for Proposed Springhill Suites Hotel Parcel B2, 195 Hegenberger Road, Oakland*. December 2013.

United States Geological Survey (USGS), Hayward, California, 15-minute topographic quadrangle, 1899.

United States Geological Survey (USGS), Hayward, California, 15-minute topographic quadrangle, 1914.

United States Geological Survey (USGS), Hayward, California, 15-minute topographic quadrangle, 1942.

United States Geological Survey (USGS), Hayward, California, 15-minute topographic quadrangle, 1947.
2.2.6 Geology, Soils, and Seismicity

<table>
<thead>
<tr>
<th>Issues (and Supporting Information Sources):</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. GEOLOGY, SOILS, AND SEISMICITY — Would the project:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Expose people or structures to potential substantial adverse effects, including the risk of loss, injury, or death involving:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i) Rupture of a known earthquake fault, as delineated on the most recent Alquist-Priolo Earthquake Fault Zoning Map issued by the State Geologist for the area or based on other substantial evidence of a known fault? (Refer to Division of Mines and Geology Special Publication 42.)</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>ii) Strong seismic ground shaking?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>iii) Seismic-related ground failure, including liquefaction?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>iv) Landslides?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>b) Result in substantial soil erosion or the loss of topsoil?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>c) Be located on a geologic unit or soil that is unstable, or that would become unstable as a result of the project, and potentially result in on- or off-site landslide, lateral spreading, subsidence, liquefaction, or collapse?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>d) Be located on expansive soil, as defined in the California Building Code, creating substantial risks to life or property?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>e) Have soils incapable of adequately supporting the use of septic tanks or alternative wastewater disposal systems where sewers are not available for the disposal of wastewater?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
</tbody>
</table>

Discussion

a.i) **Less than Significant.** The project site is not located within an Alquist-Priolo Fault Rupture Hazard Zone, as designated through the Alquist-Priolo Earthquake Fault Zoning Act.\(^5\) No active faults are known to pass through the immediate project region (Hart, 2007).\(^6\) The nearest active faults to the project site are the Hayward Fault (approximately 3 miles east), the Calaveras Fault (approximately 12 miles east), the San Andreas Fault (approximately 15 miles west), and the Concord-Green Valley Fault (approximately 17 miles northeast). Although fault rupture is not necessarily bound by the limits of a fault rupture hazard zone, ground displacement is most commonly seen along traces of active faults during major earthquakes that result in observable offsets. Because the site is not located on or relatively close to an active or potentially active fault, the potential for surface fault rupture is low and the impact is considered less than significant.

\(^5\) Alquist-Priolo Zones designate areas most likely to experience fault rupture, although surface fault rupture is not necessarily restricted to those specifically zoned areas.

\(^6\) Active faults are defined as those faults which show evidence of movement within the last 11,000 years (Holocene); potentially active faults are defined as those that have shown evidence of surface displacement over the last 1.6 million years (Quaternary).
Less than Significant. The project site is located in the San Francisco Bay Area, a seismically active region of California with numerous active faults. Seismic activity in the region is dominated by the San Andreas Fault system, which includes the San Andreas, Hayward, and Calaveras faults. According to the U.S. Geological Survey (USGS) Working Group on Earthquake Probabilities (2003), the probability of one or more earthquakes of Richter magnitude 6.7 or higher occurring in the San Francisco Bay Area for the 30-year period from 2007 to 2036 is 63 percent. The Hayward and San Andreas faults are the most likely of the Bay Area faults to experience a major earthquake. The probability of a large earthquake anywhere along the Hayward Fault during this period was determined to be 31 percent, and 21 percent for the San Andreas Fault. In the event of an earthquake on one of these faults, the project site is expected to experience very strong to very violent ground shaking (ABAG, 2012; USGS, 2003).

Seismic shaking can also trigger ground-failures caused by liquefaction. Liquefaction is the process by which granular soils, such as sands or loamy sands, behave like a dense fluid when subjected to prolonged shaking during an earthquake. Seismic hazard mapping prepared by the California Department of Conservation, Geological Survey (2003), indicates that the project site is located within a designated Seismic Hazard Zone for liquefaction. Based on borings completed during previous environmental and geotechnical investigations, soils consist of approximately 5.5 feet of fill material, which are underlain by approximately 4.5 to 6.5 feet of saturated Bay muds (ACC, 2013 and TRC, 2013). Fill materials are predominantly clayey sands, with assorted debris, including brick, concrete, charcoal, glass, wood, and competent rock fragments (ACC, 2013 and TRC, 2013). An updated geotechnical report was recently completed for the site which included a couple of additional borings (TRC, 2013). According to the report, the site soils were consistent with the findings of the 2002 investigation with approximately 4 to 5 feet of artificial fill over soft organic clay (Bay Mud) (TRC, 2013). In addition, sandy layers were found at depths of 95 and 30 feet below ground surface (TRC, 2013). Incorporation of such methods as using post-tensioned mat foundations or deep foundations can reduce the potential for structural damage from settlement due to liquefaction.

Another potential hazard associated with seismic shaking is settlement. Settlement of the ground surface can be accelerated and accentuated by earthquakes. During an earthquake, settlement can occur as a result of the relatively rapid compaction and settling of subsurface materials (particularly loose, uncompacted, and variable sandy sediments above the water table) due to the rearrangement of soil particles during prolonged ground shaking. Settlement can occur both uniformly and differentially (i.e., where adjoining areas settle at different amounts), also referred to as differential settlement. Areas underlain by artificial fill would be susceptible to this type of settlement. To reduce geologic and seismic hazards resulting from liquefaction and settlement, the project sponsor would incorporate recommended methods of minimizing these hazards through foundation design consistent with building code requirements.
The proposed project would be required to comply with the geotechnical and seismic design requirements of the most recent version of the California Building Code (Title 24). Furthermore, the project sponsor would be required to submit a geotechnical engineering analysis accompanied by detailed engineering drawings to the City of Oakland Building Services Division prior to excavation, grading, or construction activities on the site. This is consistent with standard City of Oakland practices to ensure that all buildings are designed and built in conformance with the seismic requirements of the City of Oakland Building Code. A geotechnical engineering analysis report that includes drawings and details of relevant grading and/or construction activities on the project site would be required to address constraints and ensure the recommendations identified in the geotechnical investigation are implemented. These required submittals ensure that buildings are designed and constructed in conformance with the requirements of all applicable building code regulations, pursuant to standard City of Oakland procedures.

Mandatory compliance with all applicable building code regulations, and implementation of all geotechnical recommendations contained in the required geotechnical engineering investigation would reduce potential project impacts associated with strong seismic ground shaking and seismically-induced ground failure to less-than-significant levels.

a.iv) **No Impact.** The project site is located on relatively level topography in an urbanized area within Oakland City Limits. The Oakland foothills are located over two miles away. No impact associated with landslides would occur.

b) **Less than Significant.** The project site is currently vacant with minimal vegetation. The United States Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS) classifies the site soils as Urban Land (USDA Soil Conservation Service, 1981). This classification is applied to land adjacent to the San Francisco Bay that is covered by buildings, roads, parking lots, and other urban structures. Subsurface investigations conducted at the site indicate that the site is underlain by approximately 5 feet of artificial fill (Baseline, 2005 and TRC, 2013). The fill consists of silty sands and sands (TRC, 2013).

Project construction would include grading and earthmoving activities on the majority of the site that could expose site soils to erosion from heavy winds, rainfall, or runoff. Project construction would be required to comply with the City of Oakland’s Grading and Sedimentation and Erosion Control ordinances, as well as the Phase II National Pollution Discharge Elimination System (NPDES) permit requirements issued by the State Water Resources Control Board (SWRCB).

The City of Oakland’s Grading Ordinance requires grading permits for earthmoving activities that involve specified conditions of earth volume to be removed, specific slope characteristics, and areas where “land disturbance” or stability problems have been reported. To obtain a grading permit, the soils report, a grading plan, and an erosion and sedimentation control plan must be submitted to and approved by the City of Oakland Department of Public Works. The Sedimentation and Erosion Control Ordinance requires
that any project involving grading, clearing, grubbing, or other activities that disturb the existing soil take appropriate preventative measures to control erosion, prevent sedimentation of eroded materials from leaving the project site, and prevent the discharge of eroded materials to any water course. The Director of Public Works may require that an erosion and sedimentation control plan be approved by the Port prior to the issuance of any building permit on lots where the conditions of lot location, configuration, or contour may result in increased problems of erosion or sedimentation control. Additionally, the project would be required to comply with NPDES permit requirements, as described in Section 8, Hydrology and Water Quality, as well as the Grading and Sedimentation and Erosion Control Ordinance that includes requirements pertaining to erosion control. In addition, following completion of construction, the project site would be covered by a structure or asphalt, or would be landscaped, which substantially reduces exposure to erosion. Compliance with these regulatory measures would lessen the potential for substantial soil erosion or loss of topsoil to a less-than-significant level.

c) **Less than Significant.** See discussion of checklist items a-ii and a-iii, above. The project site is underlain by artificial fill and Bay Mud, which are soft compressible estuarine deposits that are susceptible to subsidence. The project site is also located within an area that is mapped within a seismic hazard zone for liquefaction. Implementation of geotechnical report recommendations as required by the Seismic Hazards Zonation Program and the City of Oakland would reduce potential impacts associated with instability to less-than-significant levels.

d) **Less than Significant.** Expansive soils are generally clayey soils that swell when wetted and shrink when dried. Expansive soils located beneath structures can result in cracks in foundations, walls, and floors. Typically, soil preparation and the use of imported engineered fill or reuse of onsite materials that meet building code standards would mitigate the effects of expansive soils. For the proposed project, implementation of all geotechnical recommendations contained in the updated geotechnical investigation, as required by the City of Oakland, would reduce potential impacts associated with expansive soils to less-than-significant levels.

e) **No Impact.** The proposed project does not include the installation of septic tanks or alternative wastewater disposal systems. Because the project site is located in an urban area, the proposed project would be required to connect to the existing sewer system, which provides wastewater collection service for the Port of Oakland. Thus, no impact associated with alternative wastewater disposal systems would occur.

References

Association of Bay Area Governments (ABAG), Shaking Hazard Maps for Alameda County, available online at <http://www.abag.ca.gov/bayarea/eqmaps/pickcity.html>, April 24, 2012.

TRC., Updated Geotechnical Recommendations for Proposed Springhill Suites Hotel, Oakland, California, December 4, 2013.

U.S. Department of Agriculture (USDA), Soil Conservation Service, in cooperation with University of California Agricultural Experiment Station, Soil Survey of Alameda County, California, Western Part, March 1981.

2.2.7 Greenhouse Gas Emissions

<table>
<thead>
<tr>
<th>Issues (and Supporting Information Sources):</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>7. GREENHOUSE GAS EMISSIONS — Would the project:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Generate greenhouse gas emissions, either directly or indirectly, that may have a significant impact on the environment?</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>b) Conflict with an applicable plan, policy or regulation adopted for the purpose of reducing the emissions of greenhouse gases?</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

Discussion

a, b) Potentially Significant. The proposed project would generate both direct and indirect greenhouse gas (GHG) emissions that may have a significant impact on the environment. The project’s construction would result in a number of truck trips and equipment usage, which would directly produce emissions. In addition, ongoing operations would emit greenhouse gases through several activities, including on-road vehicles, landscaping maintenance activities, water/wastewater conveyance, solid waste generation, and indirect electricity generation. Increases in GHG emissions and any potential conflicts with applicable plans, policies or regulations will be analyzed in more detail in the EIR to determine the significance of potential impacts related to GHG emissions.
2.2.8 Hazards and Hazardous Materials

<table>
<thead>
<tr>
<th>Issues (and Supporting Information Sources):</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>8. HAZARDS AND HAZARDOUS MATERIALS — Would the project:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Create a significant hazard to the public or the environment through the routine transport, use, or disposal of hazardous materials?</td>
<td>✗</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b) Create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment?</td>
<td>✗</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c) Emit hazardous emissions or handle hazardous or acutely hazardous materials, substances, or waste within one-quarter mile of an existing or proposed school?</td>
<td></td>
<td></td>
<td>✗</td>
<td></td>
</tr>
<tr>
<td>d) Be located on a site which is included on a list of hazardous materials sites compiled pursuant to Government Code Section 65962.8 and, as a result, would it create a significant hazard to the public or the environment?</td>
<td>✗</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e) For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project result in a safety hazard for people residing or working in the project area?</td>
<td></td>
<td>✗</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f) For a project within the vicinity of a private airstrip, would the project result in a safety hazard for people residing or working in the project area?</td>
<td></td>
<td></td>
<td>✗</td>
<td></td>
</tr>
<tr>
<td>g) Impair implementation of or physically interfere with an adopted emergency response plan or emergency evacuation plan?</td>
<td></td>
<td></td>
<td>✗</td>
<td></td>
</tr>
<tr>
<td>h) Expose people or structures to a significant risk of loss, injury or death involving wildland fires, including where wildlands are adjacent to urbanized areas or where residences are intermixed with wildlands?</td>
<td></td>
<td></td>
<td>✗</td>
<td></td>
</tr>
</tbody>
</table>

Discussion

a, b) Potentially Significant. The proposed project would not transport, use, or dispose of any significant quantities of hazardous materials through the proposed improvements at the project site. In addition, because there are no existing structures on the project site, no demolition would take place and therefore there would be no risk of potentially disturbing existing hazardous building materials such as asbestos containing materials, lead-based paint, or PCBs. However, the site has approximately 4 to 5 feet of artificial fill of unknown origin that may contain contaminants that could expose workers to adverse effects (Baseline, 1999 and ACC, 2013). Therefore, this impact is potentially significant and will be analyzed in the EIR.

c) No Impact. The project site is currently vacant with no use of hazardous materials. Proposed development at the site would involve storage and use of very limited quantities
of hazardous materials such as cleaners, toners, correction fluid, paints, lubricants, kitchen and restroom cleaners, pesticides, pool chemicals, and other maintenance materials, contained within manufacturers containers managed through a Hazardous Materials Business Plan as required by local, state, and federal regulations. There are no schools located within ¼ mile of the project site. Therefore, due to the limited use of hazardous materials and the absence of any schools within a quarter mile, there would be no impact associated with this criterion and it will not be analyzed in the EIR.

d) **Potentially Significant.** The project site is not included on a list of hazardous materials sites compiled pursuant to Government Code, Section 65962.5, however as noted above there is approximately 4 to 5 feet of artificial fill of unknown origin that could contain contaminants of concern (DTSC, 2013 and SWRCB, 2013). Some preliminary investigations have occurred at the site where detections of cobalt, polycyclic aromatic hydrocarbons (PAHs), and soluble lead were detected above regulatory screening levels (Baseline, 2005 and ACC, 2013). As a result, the potential impacts resulting from the presence of this artificial fill will be further analyzed in the EIR.

e) **Less than Significant.** The project site is located approximately ½ mile from Runway 10L-28R at the Oakland International Airport (OAK). As discussed in Section 10 Land Use and Land Use Planning below, the project would be subject to land use policies contained in the *Oakland International Airport Land Use Compatibility Plan* (ALUCP). The project site is located within the ALUCP Height Referral Area, which extends in a 20,000-foot radius (3.8 miles) formed at the ends of airport runways, and limits building heights to reduce potential obstructions to safe air navigation. Prior to final design, the project proponent would be required to submit the proposed project plans to the Alameda County Airport Land Use Commission (ALUC) for review and comment regarding compliance with the ALUCP. All ALUC comments regarding compliance with ALUCP would be required to be incorporated into the final project design.

In addition, a letter to the Federal Aviation Administration (FAA) requesting an obstruction evaluation and airport airspace analysis for the proposed project has been submitted and awaits review. If during the FAA’s airport airspace analysis any objects are identified as potentially intruding on airspace, the implementing agencies, airport staff, and FAA would identify appropriate steps to adjust project plans or include appropriate markings to identify hazards to aviators. Any requirements or adjustments such as reduction in building height, lighting requirements, or other safety markings would be incorporated into the final design. Thus, the impact would be less than significant.

f) **No Impact.** The project site is not located in the vicinity of a private airstrip, therefore no impact would result.

g) **Less than Significant.** The proposed project would not impair implementation of, or physically interfere with, an adopted emergency response plan or emergency evacuation plan. The proposed project would not affect any of the existing road networks.
surrounding the project site and would meet all requirements for access and egress of emergency vehicles. Please also refer to Section 16, Transportation and Traffic, for additional discussion of emergency access. Therefore, the potential impact related to emergency and evacuation plans would be less than significant and will not be analyzed in the EIR.

h) Less than Significant. The project site is located in a commercial/industrial area that is serviced by the Oakland Fire Department. However, the site is located within an area that is considered to be within a fire threatened community (ABAG, 2013). While this mapping tool is not considered to be used for site specific analysis and all new construction would be required to comply with all applicable fire code and fire suppression requirements, there is no wildland vegetation in the project vicinity. Therefore, the proposed project would not expose people or structures to significant risks associated with wildland fires and will not be analyzed further in the EIR.

References

Baseline Environmental Consulting (Baseline), Phase I/II Site Assessment, Hegenberger/Pardee Site, Parcels PO 596 and PO 598, 101-201 Hegenberger Road and 8520 Pardee Drive, Oakland, California. December 1999.

2.2.9 Hydrology and Water Quality

<table>
<thead>
<tr>
<th>Issues (and Supporting Information Sources):</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. HYDROLOGY AND WATER QUALITY — Would the project:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Violate any water quality standards or waste discharge requirements?</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>b) Substantially deplete groundwater supplies or interfere substantially with groundwater recharge such that there would be a net deficit in aquifer volume or a lowering of the local groundwater table level (e.g., the production rate of pre-existing nearby wells would drop to a level which would not support existing land uses or planned uses for which permits have been granted)?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>c) Substantially alter the existing drainage pattern of a site or area through the alteration of the course of a stream or river, or by other means, in a manner that would result in substantial erosion or siltation on- or off-site?</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>d) Substantially alter the existing drainage pattern of a site or area through the alteration of the course of a stream or river, or by other means, substantially increase the rate or amount of surface runoff in a manner that would result in flooding on- or off-site?</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>e) Create or contribute runoff water which would exceed the capacity of existing or planned stormwater drainage systems or provide substantial additional sources of polluted runoff?</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>f) Otherwise substantially degrade water quality?</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>g) Place housing within a 100-year flood hazard area as mapped on a federal Flood Hazard Boundary or Flood Insurance Rate Map or other flood hazard delineation map?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>h) Place within a 100-year flood hazard area structures that would impede or redirect flood flows?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>i) Expose people or structures to a significant risk of loss, injury or death involving flooding, including flooding as a result of the failure of a levee or dam?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>j) Expose people or structures to a significant risk of loss, injury or death involving inundation by seiche, tsunami, or mudflow?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
</tbody>
</table>

Discussion

Less than Significant with Mitigation. Project construction would involve clearing, grading, earthwork, and trenching associated with construction of new improvements on the project site. Excavation, grading, trenching, or compaction activities could expose site soils to the erosion from the forces of heavy winds, rainfall, or runoff, if not managed appropriately. The Clean Water Act (CWA) has nationally regulated the discharge of pollutants to waters of the U.S. from any point source since 1972. In 1987, amendments to the CWA added section 402(p) which established a framework for regulating non-point source stormwater discharges under the National Pollutant Discharge Elimination System (NPDES). The NPDES storm water program, implemented by the State Water Resources...
Control Board (SWRCB), regulates storm water discharges from construction sites that disturb one or more acres of land, municipal separate storm sewer systems (MS4s), and major industrial facilities. Under the NPDES, the proposed project must comply with regulations for construction activities because it would disturb more than one acre.

To comply with NPDES General Construction Activities Stormwater Permit requirements, the project sponsor would be required to develop, submit, and implement a site-specific plan Storm Water Pollution Prevention Plan (SWPPP). The SWPPP would include a description of appropriate Best Management Practices (BMPs) that minimize the discharge of pollutants from the site. Construction contractor(s) are responsible for implementation of the SWPPP, which includes maintenance, inspection, and repair of erosion and sediment control measures and water quality BMPs throughout the construction period; and they are also responsible for the maintenance of all protective devices in good and effective condition. Implementation of Mitigation Measure HYD-1 would reduce potential construction-related impacts to less than significant.

Once constructed, the proposed improvements could become potential source of stormwater pollutants that are washed by rainwater from roofs, streets, parking areas, and landscape areas into the local drainage network. Pollutant concentrations in site runoff are dependent on a number of factors, including land use conditions; site drainage conditions; intensity and duration of rainfall; the climatic conditions preceding the rainfall event; and implementation of water quality BMPs. Due to the variability of urban runoff characteristics, it is difficult to estimate pollutant loads for stormwater runoff. However, pollutants typical of parking lots include sediment, oil and grease, petroleum hydrocarbons, and metals. Without proper mitigation, project construction could contribute to the levels of stormwater pollutants and litter entering the San Leandro Bay, potentially causing adverse effects on aquatic life and human health.

The geographic area is categorized by the SWRCB as a non-traditional Municipal Separate Storm Sewer System (MS4) that discharges flows to San Francisco Bay under a NPDES municipal permit (WQ Order NO. 2013-0001-DWQ). To comply with NPDES requirements for municipal separate storm systems, the Port of Oakland has developed a Storm Water Management Plan (SWMP). The San Francisco Regional Water Quality Control Board (RWQCB) has not yet approved the Port’s SWMP, therefore the project must comply with the City of Oakland’s NPDES requirements for municipal separate storm systems and its SWMP. The project proposes a vehicle parking lot greater than 5,000 square feet and with more than 25 parking spaces, and is therefore subject to the City of Oakland’s SWMP design standards. These design standards mandate that treatment control BMPs such as biofiltration swales be constructed to passively treat the storm water flowing from the site.

Additional relevant RWQCB requirements mandate that the 85th percentile storm (85 percent of all storms), about 1.05 inches, be treated through post-construction controls, and mosquito abatement measures require that all water detained on site either evaporate or run off within 72 hours to prevent mosquito reproduction.
Also, as discussed above in Section 2.2.6, Geology, project construction would also be required to comply with the City of Oakland’s Grading and Sedimentation and Erosion Control ordinances. The Sedimentation and Erosion Control Ordinance requires that any project involving grading, clearing, grubbing, or other activities that disturb the existing soil take appropriate preventative measures to control erosion, prevent sedimentation of eroded materials from leaving the project site, and prevent the discharge of eroded materials to any water course. Implementation of Mitigation Measures HYD-2 and HYD-3 would ensure project compliance with the City of Oakland’s SWMP requirements.

Collectively, implementation of Mitigation Measures HYD-1, HYD-2, and HYD-3 would ensure that construction and operation of the proposed project would be designed in such a manner that would reduce water quality impacts to less-than-significant levels.

Mitigation Measure HYD-1: The project sponsor would prepare and implement a SWPPP for construction activities. At a minimum, the SWPPP would include the following:

- A construction schedule where excavation and grading activities occur in the dry season (generally April 15 to October 15) to reduce erosion associated with intense rainfall and surface runoff unless additional erosion control BMPs are added to the SWPPP that ensure protection against sedimentation in offsite runoff. Regardless, the construction schedule would indicate a timeline for earthmoving activities, hydroseeding, and stabilization of soils;
- Soil stabilization techniques such as hydroseeding and short-term biodegradable erosion control blankets;
- Storm drain inlet protection at downstream storm drain inlets; and
- Inspection of all drainage facilities and clearing of drainage structures of debris and sediment during the construction activities and after project completion.

Mitigation Measure HYD-2: Prior to final approval of the project, the project sponsor would submit final hydrology/hydraulics calculations for the project based on final design plans. These calculations would be reviewed and approved by a Port of Oakland and the City of Oakland. The calculations would demonstrate that the existing drainage infrastructure surrounding the project site is capable of handling post-project flows from the site. If improvements to the drainage infrastructure are necessary to accommodate the project and calculated flows from the 10-year and 100-year storm events, the project sponsor would be responsible for all of the infrastructure improvements such as the installation of detention basins or larger conveyances, if required. All drainage improvements must be reviewed and approved by a Port of Oakland to confirm that they would meet Alameda County Flood Control District requirements.

Mitigation Measure HYD-3: The project sponsor, prior to approval of building permits, would prepare a project drainage plan including existing and final drainage facilities consistent with erosion and sediment measures required by the City of
Oakland’s Grading Ordinance, the Sedimentation and Erosion Control Ordinance and NPDES requirements for post-project treatment of storm water runoff from the site. Post-project treatment measures must be hydraulically sized to treat the RWQCB-specified amount of runoff. As required by the RWQCB, the treatment system would be designed to provide treatment for the flow rate produced by a rain event equal to or at least the 85th percentile hourly rainfall intensity for the project site, based on historical records of hourly rainfall depths. The project sponsor would incorporate all City of Oakland, Port, and RWQCB comments into the project specifications for the proposed project.

b) **Less than Significant.** The California Department of Water Resources (DWR) delineates State groundwater basins based on geologic and hydrogeologic conditions. According to the DWR, the project site is located within the East Bay Plain Subbasin. The East Bay Plain Subbasin is used for municipal, industrial, and agricultural water supply. However, the domestic potable water supply for the City of Oakland and the proposed project area is not provided by groundwater sources, but rather from surface water sources maintained by the East Bay Municipal Utility District (EBMUD). Groundwater would not be used to supply water for the project. Dewatering is not anticipated for the construction of the project. The proposed project site is currently covered by pervious surfaces and would result in a reduced amount of onsite infiltration, however as stated above, the underlying groundwater is not a source of water supply and proposed drainage features could include onsite infiltration through bioswales or detention basins. Therefore, despite a reduction in the amount of infiltration that would occur onsite, the potential impact on the East Bay Plain aquifer volume or regional groundwater levels is less than significant.

c) **Less than Significant with Mitigation.** The proposed project would result in minor changes to the existing impervious surfaces, due to the construction of buildings, which would alter the existing drainage pattern. The portion of the project site that is currently paved has existing drainage facilities which would require altered facilities to accommodate the increased impervious surfaces. The closest surface water body to the project site is the San Leandro Creek channel, located approximately 300 feet northeast of the site, which would not be altered as a result of the project.

Potential project impacts associated with erosion and siltation are considered to be primarily related to construction activities. These potential impacts are addressed by **Mitigation Measure HYD-1.** Post-construction storm water treatment is addressed by **Mitigation Measures HYD-2** and **HYD-3.** Implementation of these measures would reduce project impacts associated with erosion and siltation to less-than-significant levels.

d) **Less than Significant with Mitigation.** As mentioned above, the project site is currently vacant with sparse vegetation. Project development would include new landscaping, however, the new impervious surfaces (i.e., hotel, parking, paved area, etc.) would ultimately increase the peak discharges from the site. However, post-project runoff would be conveyed by a drainage infrastructure designed to accommodate the proposed project. The formal drainage plan would be required to comply with the Alameda County Flood Control District’s (ACFCD) Hydrology and Hydraulics criteria. The ACFCD requires
that drainage infrastructure for all proposed projects be capable of handling flows from 10-year storm events, and that all facilities be capable of withstanding a 100-year storm event without failure. Implementation of Mitigation Measure HYD-2, above, would reduce potential project impacts associated with downstream flooding to less-than-significant levels.

e, f) **Less than Significant with Mitigation.** See responses to checklist items (a), (c), and (d). Potential project impacts associated with the capacity of drainage infrastructure are addressed by Mitigation Measure HYD-2. Potential project impacts associated with construction-related water quality are addressed by Mitigation Measures HYD-1. Potential long-term impacts to water quality are addressed by Mitigation Measure HYD-3. No additional mitigation is necessary.

f) **Less than Significant.** The project site is not located within a 100-year flood hazard zone as delineated by the Federal Emergency Management Agency (FEMA) (FEMA, 2009). No impact associated with the placement of housing or structures within a 100-year flood hazard area would result. In addition, the project site is not located within the projected inundation area for the 16 inch up to 48 inch sea level rise scenarios but is located within the 55 inch area over the next century and would be inundated at that level of sea rise (ABAG, 2013). The actual amount and timing of experienced sea level rise remains speculative and could vary from current estimates. Considering the partial inundation area of the site, the uncertainties regarding the amount of sea level rise, and the proposed uses of the site, the potential impact from sea level rise is considered less than significant.

j) **Less than Significant.** The San Francisco Bay is not fully enclosed and therefore not considered susceptible to seiches. The project site is not otherwise located in the vicinity of a large inland water body and therefore is not susceptible to seiches. The project site is relatively flat and not located in an area that would be susceptible to mudflows. The project site is located approximately one mile east of the open waters of the San Francisco Bay. The mouth of the San Francisco Bay is too constricted to permit a significant wave to form inside the Bay from a tsunami. Tsunami waves would be expected to attenuate through the bay. Due to the distance of the project site from the open waters of the San Francisco Bay, project impacts associated with tsunami hazards are considered less than significant.

References

Port of Oakland, Port of Oakland Design Standards for New Development and Redevelopment.
2.2.10 Land Use and Land Use Planning

Issues (and Supporting Information Sources):

<table>
<thead>
<tr>
<th>Potential Impact</th>
<th>Less Than Significant with Mitigation Incorporation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>10. LAND USE AND LAND USE PLANNING — Would the project:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Physically divide an established community?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>b) Conflict with any applicable land use plan, policy, or regulation of an agency with jurisdiction over the project (including, but not limited to the general plan, specific plan, local coastal program, or zoning ordinance) adopted for the purpose of avoiding or mitigating an environmental effect?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>c) Conflict with any applicable habitat conservation plan or natural community conservation plan?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
</tbody>
</table>

Discussion

a) **Less than Significant.** The project site is within an urban area in the City of Oakland. Land uses in the project vicinity consist of a mix of visitor-serving uses (e.g. hotels, gas stations, restaurants, etc.), commercial uses (banks, office space, etc.), light industrial land uses (Horizon Distribution, Federal Express, UPS, the U.S. Postal Service, etc.), and airport parking lots. Uses immediately adjacent to the project site include offices and parking for the Northern California Carpenter’s Union to the north, a Harley Davidson motorcycle sales and service facility to the east, a parking lot associated with Francesco’s Restaurant to the south, and a Comcast Customer Service Center to the west. The project site is currently an unpaved vacant lot.

The project would result in an increase in land use intensity at the site, and would change the surrounding urban environment by establishing a visitor-serving use on underutilized land. The proposed project would be consistent with the character of the area, which generally consists of land uses complementary to Oakland International Airport. Based on the foregoing, the proposed project would not physically divide an established community, and would result in a less-than-significant impact.

b) **Less than Significant.** The project site is located in the City of Oakland, in the Port of Oakland’s Oakland Airport Business Park, thus the proposed project would be required to comply with the City’s General Plan and the Port of Oakland Land Use and Development Code’s standards and regulations for the Oakland Airport Business Park. The project would not be required to comply with the zoning and related regulations of the City of Oakland’s Municipal Code because it is within the Port Area and no City Planning Commission or Design Review approval is necessary.

The *Land Use and Transportation Element* of Oakland’s General Plan designates the area where the project site resides as Regional Commercial, and within the Airport/Gateway sub-area. Given the business character of nearby uses, and the similar uses on nearby
properties (i.e., Hilton Hotel, Holiday Inn Suites, and Red Lion Hotel), the planned use would be consistent with the neighborhood character. It would not introduce a new use that would conflict with other land uses in the Hegenberger Road corridor. The General Plan establishes a maximum floor-area-ratio (FAR) of 4.0 (i.e., the ratio of the total net floor area of a building is four times the total lot area) for this non-residential use (City of Oakland, 1998). The proposed hotel’s FAR would be approximately 1.13, which would be within the allowable FAR permitted by the City’s General Plan.

The project site is within the Oakland Airport Business Park and would be required to comply with the Port’s standards and restrictions contained in the Port’s Land Use and Development Code (2011). Per the Code, the project site is located within an area designated “Commercial Corridor”, and based on the characteristics, function, and use of the planned development, the project would be categorized under the “Transient Lodging” permitted use. Transient Lodging includes full service hotels defined as a minimum of 100 sleeping rooms, a full service restaurant providing three meals per day and room service, and includes at least one indoor and one outdoor recreational amenity. As described in the Project Description, the proposed hotel would have 140 sleeping rooms, a full service restaurant, an indoor exercise facility and an outdoor swimming pool. Thus, the project would be consistent with land uses permitted by the Port.

In addition to regulating land uses, the Port’s Land Use and Development Code also includes a number of regulations pertaining to such topics as setbacks, landscaping, parking requirements, site access, lighting, and signage. The proposed project would be in compliance with the established minimum setback requirements of a 20-foot front setback and a 10-foot side setback along the eastern, western, and southern portion of the project site. Based on these planned measurements, the project’s front and side setbacks would be in compliance with the Port’s Code. Compliance with lighting, signage and landscaping regulations are addressed in Section 1, Aesthetics and site access and parking are addressed in Section 16, Transportation and Traffic.

Additional development requirements include minimum parking standards for any permitted use within the Oakland Airport Business Park. The Port’s Land Use and Development Code establishes parking standards based on the number of sleeping rooms, meeting/conference space, and employee estimates to assure that parking will be accommodated on site. Accordingly the proposed project would provide up to 139 parking spaces for employee and visitors. Therefore, the project would provide a sufficient number of parking spaces to accommodate employee and visitor demand and would not result in any onsite parking deficiencies nor conflict with the Port’s Code.

The project design is subject to architectural review by the Design Review Committee of the Port and guided by Section 4 of the Land Use and Development Code for development in the Oakland Airport Business Park. Therefore, the design of the proposed project would be required to be in compliance with the guidelines included in Land Use and Development Code prior to approvals. Additionally, the proposed project would be
required to meet landscaping requirements along the property lines. These landscaping plans would also be subject to review and approval by the Port’s Design Review Committee.

The project site is located approximately a half mile from Runway 10L-28R at Oakland International Airport. Because of the project’s proximity to Oakland International Airport, it would also be subject to land use policies contained in the Oakland International Airport Land Use Compatibility Plan (ALUCP). The ALUCP for Oakland International Airport identifies guidelines for the use by the Alameda County airport land use commission (ALUC) to minimize public exposure to excessive noise and safety hazards near airports (Alameda County, 2010). Relevant policies include those regarding height and hazards.

The project site is located within the ALUCP Height Referral Area, which extends in a 20,000-foot radius (3.8 miles) formed at the ends of airport runways, and limits building heights to reduce potential obstructions to safe air navigation. The project site is also within the General Referral Area which delineates the planning area for which any “project,” or proposed action subject to review by a local public agency, is also subject to ALUC review for determination of project consistency or inconsistency with the policies in the ALUCP. Allowable building heights depend on the distance of a proposed building from the end of the nearest runway. Prior to final design, the project proponent would be required to submit the proposed project plans to the Alameda County ALUC for review and comment regarding compliance with the ALUCP. All ALUC comments regarding compliance with ALUCP would be required to be incorporated into the final project design.

A letter has been submitted to the Federal Aviation Administration (FAA) requesting an obstruction evaluation and airport airspace analysis for the proposed project (ref: 2013-AWP-7636). The letter includes a completed copy of FAA Form 7460-1 “Notice of Proposed Construction and Alteration”. If during the FAA’s airport airspace analysis any objects are identified as potentially intruding on airspace, the implementing agencies, airport staff, and FAA would identify appropriate steps to adjust project plans or include appropriate markings to identify hazards to aviators. Any requirements or adjustments such as reduction in building height, lighting requirements, or other safety markings would be incorporated into the final design. Thus, the impact would be less than significant.

The project would not result in a fundamental conflict with any applicable land use plan, policy, or regulation of an agency with jurisdiction over the project adopted for the purpose of avoiding or mitigating an environmental effect. Thus, the project would result in a less-than-significant impact.

c) **No Impact.** There is no established habitat plan or natural community conservation plan established for the project site. Therefore, the proposed project would have no impact and
this impact will not be further addressed in the EIR. For more information regarding onsite biological resources, see Section 4, *Biological Resources*.

References

2.2.11 Mineral Resources

<table>
<thead>
<tr>
<th>Issues (and Supporting Information Sources):</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>11. MINERAL RESOURCES — Would the project:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Result in the loss of availability of a known mineral resource that would be of value to the region and the residents of the state?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
<tr>
<td>b) Result in the loss of availability of a locally important mineral resource recovery site delineated on a local general plan, specific plan or other land use plan?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
</tbody>
</table>

Discussion

a, b) **No Impact.** While mining has occurred at various locations throughout Alameda County and specifically in Oakland, the project site has no known past or existing mineral resources. The proposed project would therefore not require quarrying, mining, dredging, or extraction of locally important mineral resources on site, nor would it deplete any nonrenewable natural resource.
2.2.12 Noise

<table>
<thead>
<tr>
<th>Issues (and Supporting Information Sources):</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>12. NOISE — Would the project:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Result in exposure of persons to, or generation of, noise levels in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies?</td>
<td>☐ ☐ ☒ ☐</td>
<td>☐ ☐ ☒ ☐</td>
<td>☒ ☐ ☐ ☐</td>
<td>☐ ☐ ☐ ☐</td>
</tr>
<tr>
<td>b) Result in exposure of persons to, or generation of, excessive groundborne vibration or groundborne noise levels?</td>
<td>☐ ☐ ☒ ☐</td>
<td>☐ ☐ ☒ ☐</td>
<td>☒ ☐ ☐ ☐</td>
<td>☐ ☐ ☐ ☐</td>
</tr>
<tr>
<td>c) Result in a substantial permanent increase in ambient noise levels in the project vicinity above levels existing without the project?</td>
<td>☐ ☐ ☒ ☐</td>
<td>☐ ☐ ☒ ☐</td>
<td>☒ ☐ ☐ ☐</td>
<td>☐ ☐ ☐ ☐</td>
</tr>
<tr>
<td>d) Result in a substantial temporary or periodic increase in ambient noise levels in the project vicinity above levels existing without the project?</td>
<td>☐ ☐ ☒ ☐</td>
<td>☒ ☐ ☒ ☐</td>
<td>☒ ☐ ☐ ☐</td>
<td>☐ ☐ ☐ ☐</td>
</tr>
<tr>
<td>e) For a project located within an airport land use plan area, or, where such a plan has not been adopted, in an area within two miles of a public airport or public use airport, would the project expose people residing or working in the area to excessive noise levels?</td>
<td>☐ ☐ ☒ ☐</td>
<td>☐ ☐ ☒ ☐</td>
<td>☒ ☐ ☐ ☐</td>
<td>☐ ☐ ☐ ☐</td>
</tr>
<tr>
<td>f) For a project located in the vicinity of a private airstrip, would the project expose people residing or working in the project area to excessive noise levels?</td>
<td>☐ ☐ ☒ ☐</td>
<td>☐ ☐ ☒ ☐</td>
<td>☒ ☐ ☐ ☐</td>
<td>☐ ☐ ☐ ☐</td>
</tr>
</tbody>
</table>

Discussion

Sound is mechanical energy transmitted by pressure waves through a medium such as air. Noise is defined as unwanted sound. Sound is characterized by various parameters that include the rate of oscillation of sound waves (frequency), the speed of propagation, and the pressure level or energy content (amplitude). Sound pressure level is measured in decibels (dB), with zero dB corresponding roughly to the threshold of human hearing, and 120 to 140 dB corresponding to the threshold of pain. Typically, sound does not consist of a single frequency, but rather a broad band of frequencies varying in levels of magnitude. Given that the typical human ear is not equally sensitive to all frequencies of the audible sound spectrum, when assessing potential noise impacts, sound is measured using an electronic filter that de-emphasizes low and extremely high frequencies, referred to as A-weighting, and is expressed in units of A-weighted decibels (dBA).7

Noise Exposure and Community Noise

Noise levels rarely persist consistently over a long period of time. Rather, noise levels at any one location vary with time. Specifically, community noise is the result of many distant noise sources that constitute a relatively stable background noise exposure where the individual contributors are unidentifiable. Throughout the day, short duration single-event noise sources (e.g., aircraft flyovers, motor vehicles, sirens) that are readily identifiable to the individual add to the existing noise levels.

7 All noise levels reported herein reflect A-weighted decibels unless otherwise stated.
background noise level. The combination of the slowly changing background noise and the single-event noise events give rise to a constantly changing community noise environment.

To legitimately characterize a community noise environment and evaluate cumulative noise impacts, community noise levels must be measured over an extended period of time. This time-varying characteristic of environmental noise is described using statistical noise descriptors, including the ones described below:

\[L_{eq} \]: The equivalent sound level is used to describe noise over a specified period of time, typically one hour, in terms of a single numerical value. The \(L_{eq} \) is the constant sound level that would contain the same acoustic energy as the varying sound level, during the same time period (i.e., the average noise exposure level for the given time period).

\[L_{max} \]: The instantaneous maximum noise level measured during the measurement period of interest.

\[DNL \]: The day-night average sound level (DNL) is the energy average of the A-weighted sound levels occurring during a 24-hour period, accounting for the greater sensitivity of most people to nighttime noise by weighting (“penalizing”) nighttime noise levels by adding 10 dBA to noise between 10:00 p.m. and 7:00 a.m.

\[CNEL \]: Similar to the DNL, the Community Noise Equivalent Level (CNEL) adds a 5-dBA “penalty” for the evening hours between 7:00 p.m. and 10:00 p.m. in addition to the 10-dBA penalty between the hours of 10:00 p.m. and 7:00 a.m.

In general, the more a new noise exceeds the previously existing ambient noise level, the less acceptable the new noise would be judged by those hearing it. With regard to increases in A-weighted noise level, the following relationships occur:

- except in carefully controlled laboratory experiments, a change of 1 dBA cannot be perceived;
- outside of the laboratory, a 3-dBA change is considered a just-perceivable difference;
- a change in level of at least 5 dBA is required before any noticeable change in human response would be expected; and
- a 10-dBA change is subjectively heard as approximately a doubling in loudness, and can cause adverse response.

These relationships occur in part because of the logarithmic nature of the decibel system. Because the decibel scale is based on logarithms, two noise sources do not combine in a simple additive fashion, but rather logarithmically. For example, if two identical noise sources produce noise levels of 50 dBA, the combined sound level would be 53 dBA, not 100 dBA.

a) Less than Significant. The Noise Element of the City of Oakland General Plan contains guidelines for determining the compatibility of various land uses with a range of ambient noise levels given that some land uses are more sensitive to noise than others (City of Oakland, 2005). The City of Oakland has adopted the noise guidelines established by the California Governor’s Office of Planning and Research to judge the compatibility.
between various land uses and their noise environments. For hotels, office buildings and business commercial uses, noise levels of up to 65 dBA Ldn are “normally acceptable” and levels between 65 and 75 dBA Ldn are “conditionally acceptable.” Under “normally acceptable” conditions, development may occur without any analysis of potential noise impacts to the proposed development. Under “conditionally acceptable” conditions, an analysis of noise-reduction requirements is required and any necessary noise-mitigating features must be included in the design. In general, conventional construction would usually suffice as long as it incorporates air conditioning or forced fresh-air-supply systems, as it encourages closed windows which in turn reduces noise.

Future project guests and employees would be exposed to the ambient noise environment of the project site. The ambient noise environment in the project vicinity is most influenced by human-caused sources of noise, primarily noise associated with the adjacent transportation sources. Existing daytime noise levels monitored at the project site were 52 dBA and predominantly influenced by motor vehicle traffic on Hegenberger Road as well as occasional loading noise of adjacent freight facilities and aircraft noise from Oakland International Airport. Maximum noise levels of up to 65 dBA were recorded. The monitored daytime noise level would be roughly equivalent to the day-night noise level (Ldn) in the project and the noise environment would be within the “normally acceptable” range for hotel land uses. Long-term noise monitoring conducted for another project approximately 2,000 feet northwest of the project site identified an Ldn of 59 dBA. Therefore, noise impacts to future guests and workers at the proposed hotel would be less than significant.

In the cumulative scenario, the Oakland Airport Connector is an aerial guide way transit system currently under construction. Once operational, transit trains will traverse an aerial structure along Hegenberger Road, approximately 270 feet east of the proposed hotel setback. The environmental analysis conducted for the Oakland Airport Connector found that noise impacts from Connector operations on existing hotel land uses directly fronting on Hegenberger Road would be less than significant (BART, 2002). However, the document also identifies a significant cumulative noise impact to existing hotels, stating “cumulative growth in motor vehicle traffic noise would cause a significant impact to each of the hotels along the Hegenberger Road portion of the project corridor”.

The proposed project would be setback from both Hegenerberger Road and the future operations of the Oakland Airport Connector than those analyzed in the 2002 analysis for the Connector. Additionally, as a new hotel development, the project would be subject to California noise insulation standards (California Building Code, Title 24, Part 2, Chapter 12, Section 1207) requiring interior a CNEL of 45 dBA. Evidence of compliance with this standard is required with a building permit Consequently, because the proposed hotel would be set back further from the aerial guideway than the hotels considered in the 2002 analysis for the connector and because state regulations will ensure acceptable interior noise levels, future operations of the Connector would not expose future occupants of the proposed project to cumulative noise levels in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies.
Stationary Source Standards. The portion of the City of Oakland Noise Ordinance (Oakland Planning Code Section 17.120.050) that governs operational noise relates to activities on a project site that would affect nearby land uses. The proposed project does not call for the creation of any significant sources of stationary noise on the site. The only ongoing stationary noise source on the site would be mechanical equipment such as the heating, ventilation and air conditioning (HVAC) systems associated with the hotel. At the same time, given the proposed development of the hotel and the distance between the hotel and neighboring land uses, it is reasonable to conclude that noise levels associated with the HVAC systems would not violate any of the standards set out in Section 17.120.050 of the Municipal Code. Moreover, the HVAC systems for the hotel would be required to comply with the City of Oakland’s standards for operational noise. As a result, operational noise sources associated with the project site would not violate the City of Oakland Noise Ordinance (Oakland Planning Code Section 17.120.050) regarding operational noise. Therefore, the impact from operational noise would be less than significant.

b) **Less than Significant.** Ground-borne vibration from construction activities at the project site would produce vibration. Piles for the proposed hotel would not be driven but would be cast in place after auguring. Typical reference vibration levels for various pieces of equipment, including drilling, are listed below in Table 1. The nearest buildings are located 45 feet from potential construction areas and would not result in significant vibration resulting in building damage (exceeding 0.2 peak particle velocity (PPV)) or human annoyance (exceeding 80 Vdb) at the nearest receptors. The nearest residential receptors would be over 1,400 feet away and at this distance would be unaffected by construction related vibration. This would be a less-than-significant impact. Implementation of pre-drilling would substantially reduce vibration levels.

<table>
<thead>
<tr>
<th>Equipment/Activity</th>
<th>PPV at 25 ft (inches/second)(^a)</th>
<th>PPV at nearest residential receptor (45 feet)</th>
<th>RMS at reference distance 25 ft (Vdb)(^b)</th>
<th>RMS at nearest receptor (45 feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large Bulldozer</td>
<td>0.089</td>
<td>0.04</td>
<td>87</td>
<td>79</td>
</tr>
<tr>
<td>Loaded Trucks</td>
<td>0.076</td>
<td>0.03</td>
<td>86</td>
<td>78</td>
</tr>
<tr>
<td>Caisson Drilling</td>
<td>0.089</td>
<td>0.04</td>
<td>87</td>
<td>79</td>
</tr>
</tbody>
</table>

\(^a\) Buildings can be exposed to ground-borne vibration levels of 0.2 PPV without experiencing structural damage.

\(^b\) The human annoyance response level is 80 Vdb.

c) **Less than Significant.** The proposed project would result in permanent increases in stationary source noise generated at the project that were addressed relative to applicable City ordinances in response to criterion a). However, the proposed project would also generate increases in off-site traffic which is a non-stationary noise source not addressed by City or Port ordinances.
The proposed project would contribute to increased traffic volumes on local roadways. Noise level projections were made using traffic data and the Federal Highway Administration (FHWA) Noise Prediction Model for those road segments that would experience the greatest increase in traffic volume and/or that would pass near residential areas. The model is based on the California Vehicle Noise (CALVENO) reference noise factors developed by Caltrans for automobiles, medium trucks, and heavy trucks, with consideration given to vehicle volume, speed, roadway configuration, distance to the receiver, and the acoustical characteristics of the site. For the modeling effort, both a.m. and p.m. peak hour traffic volumes during weekdays were analyzed. Modeled existing noise levels shown in Table 3 correspond to a distance of 15 meters (50 feet) from the centerline of applicable roadway segments.

The results of the modeling effort are shown in Table 2 for the baseline (2013) and baseline plus project scenarios. The traffic analysis indicates that the project would generate 74 additional vehicle trips on Hegenberger Road during the a.m. peak hours and 84 additional vehicle trips during the p.m. peak hour.

<table>
<thead>
<tr>
<th>Road Segment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline Traffic Noise</td>
</tr>
<tr>
<td>------------------------</td>
</tr>
<tr>
<td>1. Hegenberger Road (between Edgewater Road and Pardee Drive) AM Peak Hour</td>
</tr>
<tr>
<td>2. Hegenberger Road (between Edgewater Road and Pardee Drive) PM Peak Hour</td>
</tr>
</tbody>
</table>

*These listed values represent the modeled existing noise levels from mobile sources along specified roadways and are based on traffic data from the Transportation Section. Road center to receptor distance is assumed to be 15 meters (approximately 50 feet). Vehicle mix on these road segments is assumed to be 95 percent auto, three percent medium trucks, and two percent heavy trucks. The speed for the roadway is assumed to be 30 miles per hour.

The City of Oakland CEQA significance thresholds identify an increase of 5 dBA or more as a significant project-level increase in roadway noise and, if such an increase occurs under a cumulative scenario, a project contribution of 3 dBA or more is identified as a cumulatively considerable contribution. As can be seen from Table 2, the proposed project would increase existing local roadway noise levels by 0.1 dBA and have a less than significant project-level roadway noise impact. These are nominal increases that would be undetectable by the human ear. Further, this increase would also be less than cumulatively considerable in a cumulative development context.

d) **Less than Significant with Mitigation.** Construction is expected to commence in August 2014 and last for 15 months. Activities occurring during this period would consist of, excavation, auguring and concrete pumping, building erection, utility trenching, and landscaping.
The City of Oakland Noise Ordinance (Oakland Planning Code Section 17.130.050) sets the maximum allowable noise level standards that apply to temporary exposure to short-term (i.e., lasting fewer than 10 days) and long-term (i.e., lasting more than 10 days) construction noise (see Table 3).

Table 3
MAXIMUM ALLOWABLE RECEIVING NOISE LEVEL STANDARDS FOR TEMPORARY CONSTRUCTION ACTIVITIES, dBA

<table>
<thead>
<tr>
<th>Operation/Receiving Land Use</th>
<th>Daily 7 AM to 7 PM</th>
<th>Weekends 9 AM to 8 PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-Term Operation (fewer than 10 days)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residential</td>
<td>80</td>
<td>65</td>
</tr>
<tr>
<td>Commercial, Industrial</td>
<td>85</td>
<td>70</td>
</tr>
<tr>
<td>Long-Term Operation (more than 10 days)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residential</td>
<td>65</td>
<td>55</td>
</tr>
<tr>
<td>Commercial, Industrial</td>
<td>70</td>
<td>60</td>
</tr>
</tbody>
</table>

SOURCE: City of Oakland, Oakland Planning Code, Section 17.120.050, 2011.

Construction of the proposed project would generate temporary and intermittent noise at and near the project site. Noise levels would fluctuate depending on the particular type, number, and duration of use of various pieces of construction equipment. Typical noise levels generated by the construction activities that would be required for construction of the proposed project are shown in Table 4. The project construction would not require pile driving. The noisiest construction activity would be expected to range from 77 dBA to 85 dBA.

Table 4
TYPICAL CONSTRUCTION EQUIPMENT NOISE LEVELS

<table>
<thead>
<tr>
<th>Construction Phase</th>
<th>Average Noise Level (dBA, Leq at 50 feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backhoe</td>
<td>78</td>
</tr>
<tr>
<td>Auger Drill Rig</td>
<td>84</td>
</tr>
<tr>
<td>Grader</td>
<td>85</td>
</tr>
<tr>
<td>Loader</td>
<td>79</td>
</tr>
<tr>
<td>Paver</td>
<td>77</td>
</tr>
<tr>
<td>Excavator</td>
<td>81</td>
</tr>
</tbody>
</table>

For the purposes of evaluating conformance with construction noise standards, the Noise Ordinance specifically identifies standards only for residential and commercial/industrial land uses. The nearest residential land uses to the project site are located over 1,400 feet away, a distance which would result in full attenuation of construction noise levels, particularly given intervening buildings and roadways. This conclusion is based on a
standard conservative attenuation rate of 6 dBA per doubling of distance from a stationary source. Construction noise standards for commercial and industrial land uses are 85 dBA for short-term (less than 10 days) construction operations such as grading and auger drilling and 70 dBA for long-term construction operations during weekdays between 7:00 a.m. and 7:00 p.m. Weekend construction noise is restricted to 60 dBA between 9:00 a.m. and 8:00 p.m.

The long-term commercial construction noise standard of 70 dBA would be exceeded at adjacent commercial uses if the noisiest construction activities were for more than 10 days or occur during weekends. Consequently, construction noise is considered a significant noise impact and mitigation is required. The impact would be reduced to a less-than-significant level with implementation of the following mitigation measure:

Implementation of Mitigation Measures NOI-1a through NOI-1c, the City of Oakland noise measures adopted by the Oakland City Council on January 16, 2001, would reduce the impact of temporary construction noise. With adoption of these mitigation measures, noise impacts from project construction impacts would be considered less than significant.

Mitigation Measure NOI-1a: The project sponsor shall require construction contractors to limit standard construction activities as required by the City Building Department. Such activities are generally limited to between 7:00 a.m. and 7:00 p.m. Monday through Friday, with extreme noise generating activities greater than 90 dBA limited to between 8:00 a.m. and 4:00 p.m., Monday through Friday, with no extreme noise generating activity permitted between 12:30 and 1:30 p.m. No construction activities shall be allowed on weekends until after the building is enclosed, without prior authorization of the Port of Oakland, and no extreme noise generating activities shall be allowed on weekends and holidays.

Mitigation Measure NOI-1b: To reduce daytime noise impacts due to construction, the project sponsor shall require construction contractors to implement the following measures:

- Equipment and trucks used for project construction shall use the best available noise control techniques (e.g., improved mufflers, equipment redesign, use of intake silencers, ducts, engine enclosures, and acoustically-attenuating shields or shrouds, wherever feasible).

- Impact tools (e.g., jack hammers, pavement breakers, and rock drills) used for project construction shall be hydraulically or electrically powered wherever possible to avoid noise associated with compressed air exhaust from pneumatically powered tools. Where use of pneumatic tools is unavoidable, an exhaust muffler on the compressed air exhaust shall be used; this muffler can lower noise levels from the exhaust by up to about 10 dBA. External jackets on the tools themselves shall be used where feasible; this could achieve a reduction of 5 dBA. Quieter procedures, such as use of drills rather than impact tools, shall be used whenever feasible.

- Stationary noise sources shall be located as far from adjacent receptors as possible, and they shall be muffled and enclosed within temporary sheds, incorporate insulation barriers, or other measures to the extent feasible.
Mitigation Measure NOI-1c: To further mitigate extreme noise generating construction impacts, a set of site-specific noise attenuation measures shall be completed under the supervision of a qualified acoustical consultant. Prior to commencing construction, a plan for implementation of such measures shall be submitted for review and approval by the City to ensure that maximum feasible noise attenuation would be achieved. These attenuation measures shall include as many of the following control strategies as feasible:

- Erect temporary plywood noise barriers around the construction site, particularly along the eastern boundary of the site to shield the adjacent buildings and other sensitive receptors;
- Utilize noise control blankets on the building structure as the building is erected to reduce noise emission from the site; and
- Monitor the effectiveness of noise attenuation measures by taking noise measurements on a regular basis and reporting those measurements to the Port of Oakland, which would then evaluate the need for further measures, if necessary, to attenuate noise.

e, f) Less than Significant. The proposed project is approximately a half mile east of Runway 10L-28R at Oakland International Airport. Based on analysis conducted for the Noise Element of the Oakland General Plan, the site is outside of the 65-dBA contour associated with the airport in 2004. Likewise, contour lines for airport operations in 2010 also indicate that the site would be outside the 65-dBA contour. Therefore, impacts from the airport on future transfer terminal employees would be less than significant.

References
City of Oakland, Oakland General Plan Noise Element, June 2005.
Federal Highway Administration (FHWA), Geotechnical Engineering Circular #1, Dynamic Compaction, October, 1995.
2.2.13 Population and Housing

Issues (and Supporting Information Sources):

<table>
<thead>
<tr>
<th>Issue</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>13. POPULATION AND HOUSING — Would the project:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Induce substantial population growth in an area, either directly (for example, by proposing new homes and businesses) or indirectly (for example, through extension of roads or other infrastructure)?</td>
<td></td>
<td></td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>b) Displace substantial numbers of existing housing units, necessitating the construction of replacement housing elsewhere?</td>
<td></td>
<td></td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>c) Displace substantial numbers of people, necessitating the construction of replacement housing elsewhere?</td>
<td></td>
<td></td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

Discussion

a, b, c) Less than Significant. The proposed project site is located in census tract 4090, which has a lower population than that of adjacent census tracts, due to the predominance of non-residential uses and proximity of the Oakland International Airport. The existing property is a vacant lot upon which the project proposes to construct a hotel with 140 rooms, which would primarily serve a transient population. While the proposed hotel would provide employment for approximately 15 employees, it is not expected to increase employment such that there would be a direct or indirect increase population nor contribute to future population growth. The proposed project would be considered infill development, as it is a vacant site, surrounded by existing development. The project would not extend any infrastructure or roadways within the project vicinity, and infrastructure improvements associated with the proposed project would consist of local connections to the project site. The project site is vacant, with no history of residential uses; therefore, the proposed project would not result in the displacement of any existing housing or require the need for new housing in the vicinity of the project site. Impacts to population and housing as a result of the proposed project would be less than significant.
2.2.14 Public Services

<table>
<thead>
<tr>
<th>Issues (and Supporting Information Sources):</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>14. PUBLIC SERVICES — Would the project:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Result in substantial adverse physical impacts associated with the provision of, or the need for, new or physically altered governmental facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times, or other performance objectives for any of the following public services:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i) Fire protection?</td>
<td>☐</td>
<td>☒</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>ii) Police protection?</td>
<td>☐</td>
<td>☒</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>iii) Schools?</td>
<td>☐</td>
<td>☒</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>iv) Parks?</td>
<td>☐</td>
<td>☒</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>v) Other public facilities?</td>
<td>☐</td>
<td>☒</td>
<td>☒</td>
<td>☐</td>
</tr>
</tbody>
</table>

Discussion

a.i) **Less than Significant.** The Oakland Fire Department provides fire protection services and emergency medical services throughout Oakland. The department has a staff of approximately 500 employees, including sworn fire fighters and emergency medical personnel, and approximately 70 civilian full-time equivalents. The Department operates 25 engine companies, including one at Oakland International Airport, and each company includes at least one paramedic on staff to provide emergency medical care (City of Oakland, 2004).

The proposed project is located in an area served by Station 27, located at 8501 Pardee Drive, less than 500 feet south of the project site. Considering the direct proximity to the fire station, response time would be well within the goal of seven minutes or less, for 90 percent of the response time8, as established by the City of Oakland (City).

Although the proposed project does not include permanent residential uses, an increase in population on the project site due to increase of onsite staff and guests, as well as an increase in vehicular traffic on the site could lead to an incremental increase in the demand for fire suppression and emergency medical services and an increase in traffic-related emergencies. In accordance with standard City practices, the Department would review project plans before permits are issued to ensure compliance with all applicable fire and building code standards and to ensure that adequate fire and life safety measures are incorporated into the project in compliance with all applicable state and city fire safety regulations.

8 Response time is measured from receipt of the call at dispatch until the first unit arrives on the scene of the emergency.
Because the proposed project would be required to comply with City standards and the proposed project is not anticipated to generate substantial additional demand for fire protection services, and subsequently, would not result in the need for new or expanded facilities, the project’s potential impact on fire protection services would be less than significant.

a.ii) **Less than Significant.** The Oakland Police Department (OPD), headquartered at 455 7th Street in downtown Oakland, provides police protection services throughout Oakland. OPD maintains the Eastmont Mall Police Sub Station, located at 2651 73rd Avenue, approximately 3 miles from the project site.

The project site is located within Patrol Beat 31X, which is under the jurisdiction of Patrol Area 3. This area encompasses east of High Street to the San Leandro border, and from the Oakland hills to the shoreline, and includes the Oakland Coliseum Complex, Mills College, Oakland Zoo, and Oakland International Airport. Patrol beat 31X has one officer assigned to it 24 hours a day. The Police Department’s response time to calls for police services, which are routed through the Department’s communications center at 1605 Martin Luther King Jr. Way, are recorded for the City of Oakland as a whole; the Department does not track response times for individual service areas.

Because the proposed project is not anticipated to substantially increase population onsite (or substantially increase demand for police protection services onsite), the Department would be able to meet any slight increased demand for policing services in the project area without the need to construct new facilities or expand existing facilities. Furthermore, the project would not be anticipated to affect police response times. Therefore, the project would not result in a significant impact on the provision of police protection services.

a.iii) **Less than Significant.** The project site is within the area served by the Oakland Unified School District (OUSD), which operates numerous elementary schools, middle schools, high schools, alternative schools and special education schools. OUSD oversees a variety of autonomous small schools, academies, “new schools,” reconstituted schools, early childhood education centers, adult schools, and alternative schools, as well as District and State charter schools. The project site is located in the attendance areas for Brookfield Elementary Schools, Sobrante Park Elementary, James Madison Middle School; and Lighthouse Community Charter, Lighthouse High, and Aspire Wilson (Lionel) charter schools.

Based on the planned development and its use, and the fact that little or no permanent increase in population would ensue, any increases in the number of school-age children that may result from the project would be negligible, and attributed to the staff working on the site (estimated to be a maximum of approximately 15 people), at least some of whom would likely already be Oakland residents.
The Leroy F. Greene School Facilities Act of 1988, or Senate Bill 50 (SB 50),9 restricts the ability of local agencies, such as the City of Oakland, to deny land use approvals on the basis that public school facilities are inadequate. Prior to issuance of building permits, the project sponsor would be required to pay school impact fees for hotel space to offset any potential impacts to school facilities from the proposed project. Payment of these required fees is the mandated mitigation measure for impacts to affected public schools under CEQA. Because the project sponsor would be required to comply with SB 50, the project’s potential impact on schools would be less than significant.

\textbf{Less than Significant.} The City of Oakland manages approximately 2,942 acres of park land. Oakland’s parks are designated by Oakland’s Open Space, Conservation, and Recreation Element (OSCAR) (City of Oakland, 1996) as region-serving parks, community parks, neighborhood parks, active mini-parks, passive mini-parks, or resource conservation areas.

The proposed project is located in the Airport Planning Area (APA), as defined by OSCAR. The APA comprises 2,620 acres, of which 2,546 acres (71.7 percent) are open space. While most of the open space consists of undeveloped landfill and wetlands, 263 acres are recreational lands and 52 acres are conservation lands.

The service area for a region-serving park is the entire City; these parks include Lakeside Park along Lake Merritt; a 140-acre portion of Joaquin Miller Park; an 81-acre portion of Martin Luther King, Jr. Regional Shoreline Park (MLK Park); a 28-acre portion of Lake Temescal; and Redwood-Roberts Park. The majority of these region-serving parks are located in Oakland’s hills.

While the APA includes a large region-serving park (MLK Park), a municipal golf course (Galbraith), several resource conservation areas, and three athletic fields, access to much of the open space is restricted due to FAA regulations and operational requirements at Oakland International Airport (City of Oakland, 1996). While the APA does not include community parks, the adjacent Elmhurst Planning Area has two: a 14-acre Brookfield Park, located about 1.7 miles from the project site and a 19-acre Arroyo Viejo Park and Recreation Center, located approximately 3 miles from the project site. Likewise, although there are no neighborhood parks in the APA, the neighboring Elmhurst and Central East Planning Areas contain several, including Sobrante Park, Elmhurst Plaza and Coliseum Gardens, all within approximately two miles of the project site. Other recreational facilities nearby include the MLK Park, Chuck Corica Golf Complex, Brookfield-Ira Jenkins Recreation Center, and Metropolitan Golf Links.

As noted above, the proposed project would not result in little, if any, population increase in Oakland. Therefore, no new construction of parks, open spaces or other public

9 SB 1016 recently signed by Governor Brown, amended SB 50 related to the authorization for Level III fees. Which suspended SB 50 Level III fees until, at the earliest, September 2014 and possibly later if a statewide bond is placed on the ballot before that date.
facilities would be required, and the proposed project would result in a less-than-significant impact to parks and public facilities.

References

2.2.15 Recreation

<table>
<thead>
<tr>
<th>Issues (and Supporting Information Sources):</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>15. RECREATION — Would the project:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Increase the use of existing neighborhood and regional parks or other recreational facilities such that substantial physical deterioration of the facilities would occur or be accelerated?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>b) Include recreational facilities or require the construction or expansion of recreational facilities that might have an adverse physical effect on the environment?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
</tbody>
</table>

Discussion

a, b) **Less than Significant.** Currently, Oakland has 2,942 acres of parkland (City of Oakland, 1996), including over 130 parks and recreational facilities within its City limits. This amounts to 7.52 acres of parkland per 1,000 residents, based on the City’s 2010 estimated population of 390,724 (U.S. Census, 2010) with a City goal of ten acres of parkland per 1,000 residents, according to the City’s General Plan.

The project site is located within the Airport Planning Area, defined by *Open Space, Conservation and Recreation Element* of the General Plan, as an area that contains large region-serving parks and resource conservation areas, but does not contain community or neighborhood parks or recreational facilities (City of Oakland, 1996). The closest regional park to the project site is the Martin Luther King Junior Regional Shoreline Park, a segment of which (the San Leandro Creek Staging Area) lies approximately 400 feet northeast of the project site. The closest neighborhood parks and recreational facilities to the project site include Brookfield Park, Sobrante Park, Elmhurst Plaza and Coliseum Gardens, within a two-mile radius of the project site, and Arroyo Viejo Park and Recreation Center and Rainbow Recreation Center, within three miles of the project site.

Since the project would result in little or no permanent increase in population, and because guests at a business-oriented hotel such as the proposed project would be unlikely to be heavy park users, it is not expected to substantially increase the use of neighborhood and regional parks, and this impact would be less than significant.

References

2.2.16 Transportation and Traffic

<table>
<thead>
<tr>
<th>Issues (and Supporting Information Sources):</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>16. TRANSPORTATION AND TRAFFIC — Would the project:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Conflict with an applicable plan, ordinance or policy establishing measures of effectiveness for the performance of the circulation system, taking into account all modes of transportation including mass transit and non-motorized travel and relevant components of the circulation system, including but not limited to intersections, streets, highways and freeways, pedestrian and bicycle paths, and mass transit?</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>b) Conflict with an applicable congestion management program, including, but not limited to, level of service standards and travel demand measures, or other standards established by the county congestion management agency for designated roads or highways?</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>c) Result in a change in air traffic patterns, including either an increase in traffic levels or a change in location, that results in substantial safety risks?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>d) Substantially increase hazards due to a design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment)?</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>e) Result in inadequate emergency access?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>f) Conflict with adopted policies, plans, or programs regarding public transit, bicycle, or pedestrian facilities, or otherwise decrease the performance or safety of such facilities?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
</tbody>
</table>

Discussion

a, b) Potentially Significant. The proposed project would result in an increase in traffic that could affect the surrounding regional and local circulation system as well as levels of service. These potential impacts will be analyzed in detail in the EIR.

c) No Impact. The proposed project site is located approximately one mile from Oakland International Airport (OAK). The project would not affect the level of air traffic, nor would it relocate facilities that could affect the safety of air traffic. The height of the proposed hotel would not intrude into airspace needed for safe air traffic patterns. There would be no impact.

d) Potentially Significant. Vehicular access to the site would be provided by driveway easements from both Hegenberger Road and Pardee Drive. The proposed project would not alter the layout of adjacent streets and would not introduce unsafe design features or incompatible uses into the area. The project would be expected to generate a less-than-substantial number of pedestrian and bicycle trips. This impact will be analyzed further in the EIR.
e) **Less than Significant.** The proposed project would be located on Hegenberger Road, a major arterial roadway, with vehicular access to the project site provided by driveway easements from both Hegenberger Road and Pardee Drive. Those two access points would ensure adequate emergency vehicle access to the site. This less-than-significant impact will not be discussed in the EIR.

f) **Less than Significant.** The proposed project is located in an established urban area, and development of the vacant parcel would not conflict with adopted policies, plans, or programs supporting alternative transportation. The use of public transit by project employees and patrons would be limited to persons wishing to forego the use of a private auto, preferring to use BART to access downtown Oakland, San Francisco, and elsewhere. This less-than-significant impact will not be discussed in the EIR.
2.2.17 Utilities and Service Systems

<table>
<thead>
<tr>
<th>Issues (and Supporting Information Sources):</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>17. UTILITIES AND SERVICE SYSTEMS — Would the project:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Conflict with wastewater treatment requirements of the applicable Regional Water Quality Control Board?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>b) Require or result in the construction of new water or wastewater treatment facilities or expansion of existing facilities, the construction of which could cause significant environmental effects?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>c) Require or result in the construction of new storm water drainage facilities, or expansion of existing facilities, the construction of which could cause significant environmental effects?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>d) Have sufficient water supplies available to serve the project from existing entitlements and resources, or are new or expanded entitlements needed?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>e) Result in a determination by the wastewater treatment provider that would serve the project that it has adequate capacity to serve the project's projected demand in addition to the provider's existing commitments?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>f) Be served by a landfill with sufficient permitted capacity to accommodate the project's solid waste disposal needs?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>g) Comply with federal, state, and local statutes and regulations related to solid waste?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
</tbody>
</table>

Discussion

a, b, e) **Less than Significant.** The City of Oakland Public Works Department owns and maintains the wastewater collection system, which conveys flows to the East Bay Municipal Utilities District (EBMUD) wastewater treatment plant. EBMUD provides wastewater treatment services to roughly 650,000 people within an 88-square mile area of Alameda and Contra Costa counties. EBMUD’s main wastewater treatment plant is located southwest of the Interstate 580/Interstate 80 interchange in Oakland. The plant has a dry weather capacity of 168 mgd. With the current average flow around 63 million gallons per day (mgd), the plant is operating at 37.5 percent capacity. The plant also has primary wastewater treatment capacity for up to 320 mgd (EBMUD, 2014).

According to the City of Oakland Sanitary Sewer Design Guidelines, the proposed project would generate approximately 150 gallons of wastewater per day (gpd) per room (City of Oakland, 2008). With 140 hotel rooms planned for this development, the additional project is expected to generate approximately 21,000 gallons of wastewater per day or 7.6 million gallons per year. This would comprise approximately 0.01 percent of EBMUD’s existing dry weather capacity or 0.03 percent of the current average flow.

The amount of wastewater that is anticipated by the project is incremental and would not be expected to exceed the wastewater treatment requirements of the San Francisco Bay
Regional Water Quality Control Board. Furthermore, other than extending the existing infrastructure to the project site, no additional wastewater treatment facilities would need to be constructed to accommodate the proposed project. As discussed above, the presence of artificial fill materials may contain elevated levels of contaminants such as cobalt, polycyclic aromatic hydrocarbons (PAHs), and soluble lead which could be encountered during the construction and trenching for extending infrastructure to the project site. For these reasons, the project’s impact to sanitary sewer would be less than significant.

c) **Less than Significant.** The storm drainage system in the City of Oakland includes over 370 miles of storm conduit, ranging from 12 inches to nine feet in diameter and approximately 16,000 structures to support the system, generally comprised of storm water inlets, catch basins, and manholes (City of Oakland, 2012). Storm water in Oakland generally flows from the Oakland hills to the developed flatlands. It then flows through the underground storm drains and culverts to the San Francisco Bay via the Oakland Estuary or the City of Emeryville. The Alameda County Flood Control and Water Conservation District (ACFCWCD) is responsible for the construction, operation and maintenance of major trunk lines and flood control facilities in Oakland, while the Oakland Public Works Agency (PWA) is responsible for the maintenance of the local storm drainage system within Oakland’s public areas and roads.

The proposed project site is located in a developed urban area that is served by the existing storm drainage system. If the system is found to be inadequate in meeting the drainage requirements of the project, the project sponsor may be required to provide storm drainage improvements and/or pay the required installation fees. The project sponsor would also be required to coordinate with ACFCWCD and the PWA to ensure adequate provisions of storm drain services on the project site.

b, d) **Less than Significant.** The City of Oakland receives its potable water from EBMUD, who supply water to around 1.3 million people within its total estimated 331-square-mile service area. EBMUD’s network of reservoirs, aqueducts, treatment plants and distribution facilities extends from its principal water source in the Sierra Nevada. According to EBMUD, between 1987 and 2012 water consumption by EBMUD customers has fluctuated between 225 mgd and 180 mgd (EBMUD, 2013). With the implementation of water conservation and recycling programs already in place, EBMUD estimates that projected 2020 demand would be approximately 228 mgd. The estimated water demand attributed to the proposed project is about 21,000 gallons per day (gpd).\(^{10}\) This amount is consistent with EBMUD’s future projections and would not be expected to exceed EBMUD’s water supply capacity (EBMUD, 2005). Furthermore this projected demand comprises approximately 0.01 percent of total EBMUD water demand. Since the projected water demand is anticipated to be a small percentage of the City’s total demand and since no new facilities would need to be constructed as a result of this project, the project’s impact on water provisions would be less than significant.

\(^{10}\) City of Oakland Public Works indicates a 1:1 ratio for water demand and wastewater.
f, g) **Less than Significant.** All residential and commercial solid waste generated in the City of Oakland is collected by the City’s franchise hauler, Waste Management of Alameda County (WMAC). In 2012, the City disposed of a total of 284,150 tons of decompostable waste in 22 separate landfills, a majority of which (83%) was sent to the Altamont Sanitary Landfill, located at 10840 Altamont Pass Road in Livermore (CalRecycle, 2013a). Residual solid waste is disposed at the Altamont Landfill, which accepts the following types of waste: ash, construction/demolition, contaminated soil, green materials, industrial, mixed municipal, other designated waste, tires, shreds, asbestos, and friable. This landfill has an estimated permitted capacity of 62,000,000 cubic yards, a daily permitted capacity of 11,500 tons per day (CalRecycle, 2013b), and an estimated remaining capacity of 47,220,000 cubic yards as of 2012 (Alameda County Environmental Health Department, 2013). CalRecycle estimates that the typical hotel generates 2 lbs/room/day of solid waste (CalRecycle, 2013c). Using these estimates the project would produce, at maximum 46.35 metric tons per year which equates to 0.001% of the landfill’s annual capacity of 4,197,500 tons. Based on these findings, the project’s impact on solid waste would be less than significant.

Assembly Bill 939 states that all cities must divert 50 percent of their solid waste from landfills by December 31, 2000. The Alameda County Waste Reduction and Recycling Initiative (Measure D) requires that all cities in Alameda County divert 75 percent of their solid waste from landfills by 2010. In effort to attain these goals, the City of Oakland adopted its Zero Waste Strategic Plan in December 2006. Key goals of the plan are to uphold the state mandate of 50 percent waste diversion and to send a substantially reduced amount of waste (40,000 tons per year) to landfills by 2020 (a 90 percent reduction from 2005 production rates) (City of Oakland, 2006).

In 2011, AB 341 was signed that raises the statewide waste diversion target to 75% diversion by 2020 and requires businesses and multi-family developments to arrange for recycling services on and after July 1, 2012. On September 26, 2008, SB 1016 was enacted to build on compliance requirements of AB 939, changing the indicator to a per capita disposal rate beginning in 2007. The City of Oakland has implemented a total of 49 waste diversion programs. In order to meet State legislation, the City’s per resident disposal rate target (PPD) is 5.8 while their per employee disposal rate target (PPD) is 15.3. The city surpassed both targets prior to 2007 and in the last approved reporting year, 2011, the city’s annual per resident disposal rate was 4.1 while the per employee disposal rate was 10.0 (CalRecycle, 2013d).

The Bay Area Green Business Program, a partnership developed between local governments, utilities and businesses offers technical assistance and incentives to business that operate in a more environmentally sustainable way (California Department of Toxic Substance Control, 2012). The Construction and Demolition Ordinance requires building permit applicants for certain projects, such as new construction and commercial demolition, to reuse and recycle at least 50 percent of construction and demolition waste. The ordinance includes regulations and requirements set forth under the Construction and Demolition Debris Waste Reduction and Recycling Plan (WRRP), which pertains to all
projects that include new construction, demolition (excluding single-family and duplex establishments), and any addition or alteration with construction valuation exceeding $50,000. Per the WRRP, the City of Oakland requires projects to recycle 100 percent of all asphalt and concrete and 65 percent of all other materials (City of Oakland, 2000). The project would be required to participate in the abovementioned programs and comply with City of Oakland and Alameda County recycling and waste diversion ordinances. This would entail submitting a plan to divert at least 50 percent of the construction waste generated by the project from landfill disposal as well as incorporating recycling collection and storage areas into the project design. Doing so would avoid significant solid waste disposal impacts of the project.

References

Alameda County Environmental Health Department, 2013. E-mail communication with Wing Suen, Registered Environmental Health Specialist.

City of Oakland, Construction and Demolition Ordinance (Ordinance No. 12253), effective July 2000.

City of Oakland, Department of Public Works, Zero Waste Strategic Plan, November 2006.

2.2.18 Mandatory Findings of Significance

<table>
<thead>
<tr>
<th>Issues (and Supporting Information Sources):</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. MANDATORY FINDINGS OF SIGNIFICANCE — Would the project:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Have the potential to degrade the quality of the environment, substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, reduce the number or restrict the range of a rare or endangered plant or animal, or eliminate important examples of the major periods of California history or prehistory?</td>
<td>☒</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td>b) Have impacts that are individually limited, but cumulatively considerable? (“Cumulatively considerable” means that the incremental effects of a project are considerable when viewed in connection with the effects of past projects, the effects of other current projects, and the effects of probable future projects)?</td>
<td>☒</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td>c) Have environmental effects that would cause substantial adverse effects on human beings, either directly or indirectly?</td>
<td>☒</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
</tr>
</tbody>
</table>

Discussion

a) **Less than Significant with Mitigation.** Based upon background research, site visits, and the analysis herein, the proposed project does not have the potential to substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, reduce the number or restrict the range of a rare or endangered plant or animal or eliminate important examples of the major periods of California history or prehistory.

Mitigation measures designed to minimize construction-related environmental effects biological resources and cultural resources are listed in Sections 4 and 5. No significant operational impacts related to the project are anticipated. Any potential short-term increases in potential effects to the environment during construction or use are reduced to a less-than-significant level by existing regulations and mitigation measures, as described throughout the Initial Study. The EIR will analyze the projects’ impacts to transportation, air quality, greenhouse gases, and hazardous materials.

b) **Potentially Significant.** Cumulative impacts will be addressed in the EIR.

c) **Potentially Significant.** Potentially significant adverse effect on humans will be analyzed in the EIR.
2.2.19 Mitigation Measures Identified in this Initial Study

Mitigation Measure AES-1: All lighting installations shall be designed and installed to be fully shielded (full cutoff) and to minimize glare and obtrusive light by limiting outdoor lighting that is misdirected, excessive, or unnecessary, except as in the exceptions below, and shall have a maximum lamp wattage of 250 watts for commercial lighting, or 100 watts incandescent. The location and design of all exterior lighting shall be shown on the site plan submitted to and approved by the Port during the Design Review. Lighting that is exempt includes:

- Lighting in swimming pools and other water features.
- Exit signs and other illumination required by building codes.
- Lighting for stairs and ramps, as required by the building code.
- Signs that are regulated by the sign code.
- Holiday and temporary lighting (less than thirty days use in any 1 year).
- Low-voltage landscape lighting, but such lighting should be shielded in such a way as to eliminate glare and light trespass.

Mitigation Measure BIO-1: Preconstruction Nesting Bird Surveys. To the extent practicable, construction activities including vegetation and tree removal shall be performed between September 1 and January 31 in order to avoid breeding and nesting season for birds. If these activities cannot be performed during this period pre-construction surveys for nesting birds shall be conducted by a qualified biologist.

Surveys shall be performed no more than 14 days prior to construction activities listed above in order to locate any active passerine nests within 250 feet of the project site and any active raptor nests within 500 feet of the project site. Vegetation removal and construction activities performed between September 1 and January 31 avoid the general nesting period for birds and therefore would not require preconstruction surveys.

If active nests are found on either the project site or within the 500-foot survey buffer surrounding the project site, no-work buffer zones shall be established around the nests in coordination with CDFW. In general, CDFW recommends a 250-foot construction exclusion zone around the nests of active passerine songbirds during the breeding season, and a 500-foot buffer for nesting raptors. These buffer distances are considered initial starting distances once a nest has been identified, and are sometimes revised downward to 100 feet and 250 feet, respectively, based on site conditions and the nature of the work being performed. These buffer distances may also be modified if obstacles such as buildings or trees obscure the construction area from active bird nests, or existing disturbances create an ambient background disturbance similar to the proposed disturbance.

No demolition, vegetation removal, or ground-disturbing activities shall occur within a buffer zone until young have fledged or the nest is otherwise abandoned as determined by the qualified biologist. If work during the nesting season stops for 14 days or more and then resumes, then
nesting bird surveys shall be repeated, to ensure that no new birds have begun nesting in the area while work was stopped.

Mitigation Measure BIO-2: Particular attention should be paid to the ground level glazing where onsite landscaping could attract birds to the building. Bird strikes associated with building night lighting shall be minimized by:

- Dimming lights in lobbies, perimeter circulation areas, and atria;
- Turning off all unnecessary lighting by 11:00 p.m. through sunrise, especially during peak migration periods (mid-March to early June and late August through late October);
- Incorporating light-colored solar reflective window treatments into the hotel décor to reduce glass transparency;
- Avoiding use of flood lighting;
- Educating building users about the dangers of night lighting to birds.

Mitigation Measure CUL-1: If prehistoric or historic-period archaeological resources are encountered, all construction activities within 100 feet would halt and the Port of Oakland shall be notified. Prehistoric archaeological materials might include obsidian and chert flaked-stone tools (e.g., projectile points, knives, scrapers) or toolmaking debris; culturally darkened soil (“midden”) containing heat-affected rocks, artifacts, or shellfish remains; and stone milling equipment (e.g., mortars, pestles, handstones, or milling slabs); and battered stone tools, such as hammerstones and pitted stones. Historic-period materials might include stone, concrete, or adobe footings and walls; filled wells or privies; and deposits of metal, glass, and/or ceramic refuse. A Secretary of the Interior-qualified archaeologist would inspect the findings within 24 hours of discovery. If it is determined that the project could damage a historical resource or a unique archaeological resource (as defined pursuant to the CEQA Guidelines), mitigation would be implemented in accordance with PRC Section 21083.2 and Section 15126.4 of the CEQA Guidelines, with a preference for preservation in place. Consistent with Section 15126.4(b)(3), this may be accomplished through planning construction to avoid the resource; incorporating the resource within open space; capping and covering the resource; or deeding the site into a permanent conservation easement. If avoidance is not feasible, a qualified archaeologist would prepare and implement a detailed treatment plan in consultation with the Port of Oakland.

Treatment of unique archaeological resources shall follow the applicable requirements of PRC Section 21083.2. Treatment for most resources would consist of (but would not be not limited to) sample excavation, artifact collection, site documentation, and historical research, with the aim to target the recovery of important scientific data contained in the portion(s) of the significant resource to be impacted by the project. The treatment plan would include provisions for analysis of data in a regional context, reporting of results within a timely manner, curation of artifacts and data at an approved facility, and dissemination of reports to local and state repositories, libraries, and interested professionals.

Mitigation Measure CUL-2: To further ensure protection of cultural resources during construction, the Port of Oakland’s Emergency Plan of Action for Discoveries of Unknown
Historic or Archaeological Resources shall be provided to the Construction Contractor and shall be implemented during construction.

Mitigation Measure CUL-3: In the event of discovery or recognition of any human remains during construction activities, such activities within 100 feet of the find would cease until the Alameda County Coroner has been contacted to determine that no investigation of the cause of death is required. The Native American Heritage Commission (NAHC) would be contacted within 24 hours if it is determined that the remains are Native American. The NAHC would then identify the person or persons it believes to be the most likely descendant from the deceased Native American, who in turn would make recommendations to the Port of Oakland for the appropriate means of treating the human remains and any grave goods.

Mitigation Measure HYD-1: The project sponsor would prepare and implement a SWPPP for construction activities. At a minimum, the SWPPP would include the following:

- A construction schedule where excavation and grading activities occur in the dry season (generally April 15 to October 15) to reduce erosion associated intense rainfall and surface runoff unless additional erosion control BMPs are added to the SWPPP that ensure protection against sedimentation in offsite runoff. Regardless, the construction schedule would indicate a timeline for earthmoving activities, hydoseeding, and stabilization of soils;
- Soil stabilization techniques such as hydoseeding and short-term biodegradable erosion control blankets;
- Storm drain inlet protection at downstream storm drain inlets; and
- Inspection of all drainage facilities and clearing of drainage structures of debris and sediment during construction activities and after project completion.

Mitigation Measure HYD-2: Prior to final approval of the project, the project sponsor would submit final hydrology/hydraulics calculations for the project based on final design plans. These calculations would be reviewed and approved by a Port of Oakland and the City of Oakland. The calculations would demonstrate that the existing drainage infrastructure surrounding the project site is capable of handling post-project flows from the site. If improvements to the drainage infrastructure are necessary to accommodate the project and calculated flows from the 10-year and 100-year storm events, the project sponsor would be responsible for all of the infrastructure improvements such as the installation of detention basins or larger conveyances, if required. All drainage improvements must be reviewed and approved by a Port of Oakland to confirm that they would meet Alameda County Flood Control District requirements.

Mitigation Measure HYD-3: The project sponsor, prior to approval of building permits, would prepare a project drainage plan including existing and final drainage facilities consistent with erosion and sediment measures required by the City of Oakland’s Grading Ordinance, the Sedimentation and Erosion Control Ordinance and NPDES requirements for post-project treatment of storm water runoff from the site. Post-project treatment measures must be hydraulically sized to treat the RWQCB-specified amount of runoff. As required by the RWQCB, the treatment system would be designed to provide treatment for the flow rate produced by a rain
event equal to or at least the 85th percentile hourly rainfall intensity for the project site, based on historical records of hourly rainfall depths. The project sponsor would incorporate all City of Oakland, Port, and RWQCB comments into the project specifications for the proposed project.

Mitigation Measure NOI-1a: The project sponsor shall require construction contractors to limit standard construction activities as required by the City Building Department. Such activities are generally limited to between 7:00 a.m. and 7:00 p.m. Monday through Friday, with pile driving and/or other extreme noise generating activities greater than 90 dBA limited to between 8:00 a.m. and 4:00 p.m., Monday through Friday, with no extreme noise generating activity permitted between 12:30 and 1:30 p.m. No construction activities shall be allowed on weekends until after the building is enclosed, without prior authorization of the Building Services Division, and no extreme noise generating activities shall be allowed on weekends and holidays.

Mitigation Measure NOI-1b: To reduce daytime noise impacts due to construction, the project sponsor shall require construction contractors to implement the following measures:

- Equipment and trucks used for project construction shall use the best available noise control techniques (e.g., improved mufflers, equipment redesign, use of intake silencers, ducts, engine enclosures, and acoustically-attenuating shields or shrouds, wherever feasible).

- Impact tools (e.g., jack hammers, pavement breakers, and rock drills) used for project construction shall be hydraulically or electrically powered wherever possible to avoid noise associated with compressed air exhaust from pneumatically powered tools. Where use of pneumatic tools is unavoidable, an exhaust muffler on the compressed air exhaust shall be used; this muffler can lower noise levels from the exhaust by up to about 10 dBA. External jackets on the tools themselves shall be used where feasible; this could achieve a reduction of 5 dBA. Quieter procedures, such as use of drills rather than impact tools, shall be used whenever feasible.

- Stationary noise sources shall be located as far from adjacent receptors as possible, and they shall be muffled and enclosed within temporary sheds, incorporate insulation barriers, or other measures to the extent feasible.

Mitigation Measure NOI-1c: To further mitigate extreme noise generating construction impacts, a set of site-specific noise attenuation measures shall be completed under the supervision of a qualified acoustical consultant. Prior to commencing construction, a plan for implementation of such measures shall be submitted for review and approval by the City to ensure that maximum feasible noise attenuation would be achieved. These attenuation measures shall include as many of the following control strategies as feasible:

- Erect temporary plywood noise barriers around the construction site, particularly along the eastern boundary of the site to shield the adjacent buildings and other sensitive receptors;

- Utilize noise control blankets on the building structure as the building is erected to reduce noise emission from the site; and

- Monitor the effectiveness of noise attenuation measures by taking noise measurements on a regular basis and reporting those measurements to the Port of Oakland, which would then evaluate the need for further measures, if necessary, to attenuate noise.