Background

The Port of Oakland ("Port") adopted the Schnitzer Stormwater Improvement Project ("Project") Initial Study/Negative Declaration ("IS/ND") and approved the Development Permit for the Project on January 6, 2015. The purpose of the Project was to capture and treat all stormwater collected on the Schnitzer property, and included installation and operation of water treatment systems, as well as connections to both stormwater and sanitary sewer systems. The Project included implementation of several Best Management Practices ("BMPs"), as documented in Table 2-2 in the IS/ND.

The Port prepared the first addendum to the IS/ND on January 14, 2016, to document changes to the Project. The changes consisted of enclosures with air handling systems for the shredder and the Joint Product Plant ("JPP", "shredder emission control system"). The purpose of these changes was to reduce emissions of Light Fibrous Material ("LFM") and particulates from the shredder and JPP, respectively, that settle on the ground and enter stormwater runoff.

Proposed Changes to Project

Schnitzer Steel Industries ("SSI") proposes to upgrade the shredder emission control system with Volatile Organic Compound ("VOC") treatment. The upgrade to the emissions treatment process consists of Regenerative Thermal Oxidizers("RTO") and Acid Gas Scrubbers("AGS") to remove VOCs from the gases exiting the particulate matter ("PM") scrubbers before the treated air is released from the facility. The additional VOC controls are proposed in part to ensure ongoing compliance with Bay Area Air Quality Management District ("BAAQMD") regulations. Updated information about VOC emissions from the shredder was identified through emissions testing that was conducted following installation of the PM emission control system in 2016.

The RTOs will receive the exhaust gas from the existing shredder PM emission control devices. The two RTOs will be seated on a single concrete footing approximately 50 feet by 30 feet with a depth of approximately four feet. The RTO exhaust will be connected to two AGS. The two AGS will each be seated on a concrete footing approximately 20 feet by 20 feet with a depth of approximately four feet deep. In addition, there will be a caustic tank to support the AGS operation. The tank will be placed on a concrete footing approximately 12 feet by 12 feet with a depth of approximately four feet.

The proposed equipment will occupy an area presently used to stockpile materials produced by the shredding operation. After installation of the new equipment, the stockpile will be moved approximately 100 feet to the west. A barrier wall (screenwall), measuring approximately 140 feet long and 20 feet high, will be constructed on the south and west side of the new equipment to shield it from
the relocated stockpile. The screenwall is intended to provide separation between the new emission control equipment and stockpiled materials produced by the shredding operation. The screenwall provides protection for the new equipment. It also allows materials to be stockpiled against the wall to compensate for the current stockpile working space that will be occupied by the new equipment.

The screenwall will be constructed mostly of structural steel. Steel H-sections, measuring 14 inches by 15 inches and 38 feet in length, will be embedded in the ground to a depth of 18 feet at 10-foot intervals. The piles will be driven into place by a vibratory hammer. A concrete apron measuring 12’ wide and 10” thick will be constructed at the foot of the wall. On the side facing the retained materials, the wall stem includes 1” thick steel plate spanning across the H-sections up to the full height of the wall. On the side facing the new equipment (non-retained side), ¾” thick steel plate will span across the H-sections up to a height of 6’. The voids between the plates will be filled with concrete.

The locations and schematics of the new equipment and screenwall are shown in the attached figures. The changes to the Project would not change operations, working hours, or number of employees.

Construction is expected to occur over approximately 12 months. Work includes civil works (such as excavation, grading, underground utility extension, forming and pouring of concrete footing/foundation, and use of vibratory hammer for pile installation); structural steel fabrication and installation; mechanical (such as air ducting and piping); and electrical (such as power and instrumentation and controls).

The construction work force is estimated to range from 10 to 35 craft personnel at the site each day during normal construction work hours. Construction equipment is expected to be conventional and will include: excavators; front-end loaders; soil compactors; compressors; concrete pumps; small to medium sized cranes with a large sized crane required for short duration to make several heavy lifts; all-terrain forklifts; and aerial work platforms. The vibratory hammer will be mounted on either an excavator or a medium sized crane; it is typically hydraulically driven and has minimal particle or noise emission compared to a percussive hammer.

Required Approvals

Implementation of the changes to the Project will require several approvals from local agencies.

- Development Permit from the Port
- City of Oakland Building Permit
- Authority to Construct to the Bay Area Air Quality Management District (“BAAQMD”)

Addendum to IS/ND

Section 15162 of the CEQA Guidelines states that when a negative declaration (“ND”) has been adopted for a project, no subsequent ND shall be prepared for that project unless the lead agency determines, on the basis of substantial evidence in the light of the whole record, one or more of the following:

1) Substantial changes are proposed in the project which will require major revisions of the previous ND due to the involvement of new significant environmental effects or a substantial increase in the severity of previously identified significant effects;
2) Substantial changes occur with respect to the circumstances under which the project is undertaken which will require major revisions of the previous ND due to the involvement of new significant environmental effects or a substantial increase in the severity of previously identified significant effects; or

3) New information of substantial importance, which was not known and could not have been known with the exercise of reasonable diligence at the time the previous ND was adopted, shows any of the following:

 A) The project will have one or more significant effects not discussed in the previous ND;
 B) Significant effects previously examined will be substantially more severe than shown in the previous ND;
 C) Mitigation measures or alternatives previously found not to be feasible would in fact be feasible, and would substantially reduce one or more significant effects of the project, but the project proponents decline to adopt the mitigation measure or alternative; or
 D) Mitigation measures or alternatives which are considerably different from those analyzed in the previous ND would substantially reduce one or more significant effects on the environment, but the project proponents decline to adopt the mitigation measure or alternative.

As described in the adopted IS/ND as addended, no significant impacts were identified, and no mitigation measures were required to reduce impacts to a less than significant level. The proposed changes would modify the existing air treatment processes. As described below, the changes would not result in any significant effects not discussed in the IS/ND and no mitigation measures would be required. Therefore, per Guidelines Section 15164(b), the Port has prepared this addendum to document the changes to the Project.

Environmental Checklist

For each applicable environmental resource area, the proposed changes to the Project were reviewed against the potential impacts identified in the IS/ND as addended. The review is summarized below. Impacts are the same as described in the IS/ND as addended, and BMPs included in Table 2-2 of the IS/ND would be implemented during construction of the proposed changes.

- **Aesthetics.** The proposed changes to the Project would not alter the permanent lighting and would remain consistent with the industrial nature of the site and the scale of the existing facilities. Views of new structures from local roads would be blocked by existing buildings and structures.

- **Air Quality.** Construction emissions would be temporary and similar to those described in the IS/ND because the construction equipment use is similar. Air quality dust control measures and exhaust control measures as listed in Table 2-2 would be implemented during construction. The proposed changes would reduce operational air emissions and improve air quality compared to existing conditions. The changes would not increase operational throughput, work hours, or employees.
• **Biological Resources.** The location for the new equipment is already developed with industrial uses and is devoid of vegetation and habitat.

• **Cultural Resources.** Subsurface archaeological resources are not expected to be present at the location for the new equipment. Cultural BMPs as listed in Table 2-2 would be implemented during construction in the unlikely event that archaeological resources are encountered.

• **Geology/Soils.** The new equipment, including the concrete pads and the screenwall with supporting piles, will be designed and built to Uniform Building Code seismic zone design standards or better to withstand expected earthquake ground shaking, liquefaction, or other ground failures.

• **Greenhouse Gas (“GHG”) Emissions.** Limited quantities of GHG emissions would occur during the construction period. However, these emissions would be minimal and temporary, and construction exhaust control BMPs would be implemented. Additional electricity would be required to operate the emissions control equipment. Currently, the average maximum demand at the SSI Oakland facility is 12,020kVA. The new oxidizer and scrubber, due primarily to the upsizing of two fans from 600 horsepower (“hp”) to 900 hp, may increase the demand by up to 550kVA, approximately 4.5%. This increase is not considered significant.

• **Hazards/Hazardous Materials.** Hazardous materials may be present in soils disturbed by construction activities; such materials would be handled in compliance with applicable laws and regulations and construction BMPs listed in Table 2-2 of the IS/ND.

• **Hydrology/Water Quality.** Water quality construction BMPs listed in Table 2-2 would be implemented. The proposed changes would include construction of small areas of impervious surfaces on existing heavily compacted or paved surfaces and would not affect runoff volumes. Any stormwater generated during construction or operation would be collected and treated by the Project’s stormwater treatment system.

• **Noise.** Construction noise and any operational noise are expected to be similar to or less than noise generated by existing operations, including metal shredding and shearing. As noted in Table 2-2, the construction contractor will meet City of Oakland construction noise standards set in the Oakland Planning Code, including limits on the hours of noise-generating activities, limits on the number of consecutive days of noisy construction activities, and limits on the maximum noise at receiving properties.

• **Transportation/Traffic.** No more than 35 construction workers and several pieces of construction equipment would drive to the site on any given day, which would not affect traffic levels in the area. Construction staging would be within the SSI facility and would not disrupt or block roadways. Operation of the new equipment would be done by existing employees.
SCHNITZER STEEL INDUSTRIES—OAKLAND FACILITY
PROPOSED REGENERATIVE THERMAL OXIDIZERS AND ACID GAS SCRUBBERS
LOCATION, SCREENWALL & STOCKPILE AREA MAP

June 29, 2020
Schematic – Screenwall

[Diagrams showing screenwall]

Schematic – Emissions Treatment Equipment (shown with screenwall)

[Diagrams showing emission treatment equipment with screenwall]